• Title/Summary/Keyword: multivariable controller

Search Result 147, Processing Time 0.023 seconds

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

On the Application af Robust Multivariable Controller to Distillation Column (증류탑 제어에 있어서 로바스트 다변수 제어 응용에 관한 연구)

  • 고재욱;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.238-243
    • /
    • 1986
  • Distillation columns are widely used in almost every chemical plant. The use of multivariable control for such units is attractive because of the strong interactions exhibited between outputs and inputs and the desire to control simultaneously both top and bottom products. In this research design of a robust multivariable controller for distillation column was considered; output feedback controller with proportional and integral modes was designed using pole assignment. The transfer function matrix was obtained by fitting the step response realtions between single input double output pairs of variables. This matrix was then converted to linear time invariant state space model by multivariable realization technique. With the proposed multivariable proportional and integral controller applied to the process, the result of the digital computer simulation showed a good performance of asymtotic tracking. The limited experimental performance of this multivariable control was compared with the result from simulation. It was found that the proposed controller performed satisfactorily for the distillation column which separated binary mixture of methanol and water.

  • PDF

MULTIVARIABLE WEIGHTED ADAPTIVE CONTROLLER DESIGN AND ITS APPLICATION

  • Lee, Kun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1986.07a
    • /
    • pp.132-135
    • /
    • 1986
  • This paper shows that using the multivariable controller reduces the magnitude of fluctuations of the control signals which result improved control of the steam generator outputs. Comparison of the performance of the multivariable weighted adaptive controller(MWAC) with the performance of the existing PI controller and the self_tuning controller/1/, when the system goes through a transient mode, shows that the out-puts stay closer to their set points when they are controlled by the adaptive controller.

  • PDF

Design of a Multivariable Fuzzy Controller for the Boiler-Turbine System (보일러-터빈 시스템의 위한 다변수 퍼지 제어기 설계)

  • Jo, Gyeong-Wan;Kim, Sang-U;Kim, Jong-Uk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.4
    • /
    • pp.295-303
    • /
    • 2001
  • The demand for steam generators is increasing in industrial systems in which the design strategy should be implemented for safe and efficient operation of steam generators. It is, however, difficult to design a controller by the conventional method because of the nonlinear dynamics of the steam generator and influences by the set value of disturbance. This paper presents an automatic parameter optimization technique for a multivariable fuzzy controller using evolutionary strategy, At first, we use the steady state information such as a steady state gain matrix(SSGM) and a relative gain matrix(RGM). We can obtain much information on the control inputs and the outputs of the boiler-turbine system from the matrices. In order to determine the structure of the controller by using RGM and SSGM, the fuzzy rules are trained by evolutionary strategy. The good performance of the proposed multivariable fuzzy controller is verified through simulations.

  • PDF

A multivariable decoupling self-tuning controller for systems with time delays (시간 지연을 갖는 다변수 계통에 대한 비결합 자기동조 제어기)

  • 김유택;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.190-192
    • /
    • 1987
  • In the paper an multivariable decoupling self-tuning algorithm is proposed for controller design, by specifying the closed-loop behaviour of the system in the form of a reference model, so that the controller parameters can be estimated on-line as the process development. The effectiveness of this algorithm in controlling multivariable systems is demonstrated by simulation example in spite of the usual implementation problems of self-tuning controllers.

  • PDF

PID Learning Controller for Multivariable System with Dynamic Friction (동적 마찰이 있는 다변수 시스템에서의 PID 학습 제어)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.57-64
    • /
    • 2007
  • There have been many researches for optimal controllers in multivariable systems, and they generally use accurate linear models of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. Therefore, it is necessary a PID gain tuning method without explicit modeling for the multivariable plant dynamics. The PID tuning method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the error-related objective function. This paper, especially, focuses on the role of I-controller when there is a steady state error. However, it is not easy to tune I-gain unlike P- and D-gain because I-controller is mainly operated in the steady state. Simulations for an overhead crane system with dynamic friction show that the proposed PID-LC algorithm improves controller performance, even in the steady state error.

Pole Placement Controller Design for Multivariable Nonlinear Stochastic Systems (다변수 비선형 확률 시스템에 대한 극점배치 제어기 설계)

  • Kim, Jong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-44
    • /
    • 1989
  • A controller disign method is proposed for multivariable nonlinear stochastic systems with hard nonlinearities such as Coulomb friction, backlash and saturation. In order to take the nonlinearities into account statistical linearization techniques are used. And multi- variable pole placement techniques are applied to design controller for the statistically linearized multivariable systems. The basic concept of the controller design method is to solve two coupled equations, characteristic equation and Lyapunov equation, simultaneously and iteratively for statistically linearized multivariable stochastic systems. An aircraft with saturation serves as a design example. The design example illustrates the influence of nonlinear effects. The results of the analysis are compared to Monte Carlo simulation to test their accuracy.

  • PDF

LMI-Based Robust Controllers for DC-DC Cascade Boost Converters

  • Torres-Pinzon, Carlos Andres;Giral, Roberto;Leyva, Ramon
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.538-547
    • /
    • 2012
  • This paper presents two different robust controllers for boost converters with two stages in a cascade. The first robust controller is monovariable; that is, the duty-cycle is the same for the two switches. The monovariable controller ensures that some prescribed constraints on pole placement and control effort are met, and optimizes the load disturbance rejection, while takes into account the uncertainty in certain parameters. The first controller is then compared with a multivariable robust controller; that is, with independent duty cycles in each switch. The multivariable controller takes into account the same uncertainty, constraints and optimization function. The comparison shows that the multivariable controller performs better at the expense of a slightly more complex implementation; that is, the multivariable controller provides a better rejection of the load disturbance. The paper also describes simulations and experimental results that are in perfect agreement with theoretical derivations.

A study on the multivariable control system tuning (다변수 제어 시스템의 동조에 관한 연구)

  • 주용진;서병설;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.456-458
    • /
    • 1986
  • A method for on-line tuning of the PID-controller parameters for a discrete-time multivariable process system is presented. And it is based on a step change in the controller set point. The system is presumed to be a linear, open loop stable and known one. The controller parameters are determined by the performance criterion and Fletcher-Powell methods.

  • PDF