• 제목/요약/키워드: multiple time delays

Search Result 84, Processing Time 0.026 seconds

Delay-dependent Stabilization for Systems with Multiple Unknown Time-varying Delays

  • Wu, Min;He, Yong;She, Jin-Hua
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.682-688
    • /
    • 2006
  • This paper deals with the delay-dependent and rate-independent stabilization of systems with multiple unknown time-varying delays and time-varying structured uncertainties. All the linear matrix inequalities based conditions are derived by employing free-weighting matrices to express the relationships between the terms in the Leibniz-Newton formula. The criteria do not require any tuning parameters. Numerical examples demonstrate the validity of the method.

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.

Networked Control System Design Accounting for Time-Delays with Application to Inverted Pendulum

  • Park, Byung-In;Yoo, Ho-Jun;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1470-1473
    • /
    • 2003
  • In this paper the networked control systems (NCS) problem is discussed where plants and controllers are distributed and interconnected by a common network. NCS is designed with LQ regulator and applied to an inverted pendulum accounting for the multiple time delays. We are to deals with a networked control system with a single controller, multiple sensors and multiple actuators. Since these parts are distributed, they are interconnected by communication networks. An NCS with LQ regulator is designed and applied to an inverted pendulum as a benchmark plant to check its performance under time delays induced by the network. Network induced delays are composed of two parts. One is the delay from controller to plant, and another is from plant to controller. They are assumed to be constant in this paper, and the plant and controller are discretized. To apply the LQ regulator the NCS model is transformed to a standard model with delayed states as state variable. And real network induced delay is measuring in TCP/IP network assuming that two delays are constant.

  • PDF

Delay-dependent $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays (다중 상태 시간지연을 가지는 연속시간 특이시스템의 지연종속 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.22-28
    • /
    • 2009
  • In this paper, we consider the problem of $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays. The aim of designed filter is to guarantee regularity, impulse-free, asymptotic stability and $H_{\infty}$ norm bound of filtering error singular system. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent BRL (bounded real lemma) for singular systems with multiple state-delays is derived. Based on the result, the existence condition of $H_{\infty}$ filter and filter design method are proposed in terms of LMI (linear matrix inequality). Finally, a numerical example is provided to show the validity of the design methods.

LQ Regulator of Systems with Multiple Time-Delays by Memoryless Feedback

  • Kubo, Tomohiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.373-378
    • /
    • 1998
  • A method to construct a memoryless feedback law for systems with multiple time-delays in the states is proposed. As a plant model, a differential-difference equation with multiple delayed terms is introduced, A stabilizability condition by memoryless feedback is presented. A feedback gain is calculated with a solution of a finite dimensional Riccati equation. It is shown that the resulting closed loop system is asymptotically stable, and moreover, it is a linear quadratic regulator for some cost functional. An alternative stabilizability condition which is easier to check is given.

  • PDF

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

Be it unresolved: Measuring time delays from unresolved light curves

  • Bag, Satadru;Kim, Alex G.;Linder, Eric V.;Shafieloo, Arman
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.4-48
    • /
    • 2021
  • Gravitationally lensed Type Ia supernovae may be the next frontier in cosmic probes, able to deliver independent constraints on dark energy, spatial curvature, and the Hubble constant. Measurements of time delays between the multiple images become more incisive due to the standardized candle nature of the source, monitoring for months rather than years, and partial immunity to microlensing. While currently extremely rare, hundreds of such systems should be detected by upcoming time-domain surveys. Others will have the images spatially unresolved, with the observed lightcurve a superposition of time delayed image fluxes. We investigate whether unresolved images can be recognized as lensed sources given only lightcurve information and whether time delays can be extracted robustly. We develop a method that we show can identify these systems for the case of lensed Type Ia supernovae with two images and time delays exceeding ten days. When tested on such an ensemble the method achieves a false positive rate of ≲5%, and measures the time delays with the completeness of ≳93% and with a bias of ≲0.5% for time delay ≳10 days. Since the method does not assume a template of any particular type of SN, the method has the potential to work on other types of lensed SNe systems and possibly on other transients.

  • PDF

Modeling of a Continuous-Time System with Time-delay

  • Park, Jong-Jin;Choi, Guy-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative examples are given to demonstrate the effectiveness of the developed method.

An adaptive time-delay recurrent neural network for temporal learning and prediction (시계열패턴의 학습과 예측을 위한 적응 시간지연 회귀 신경회로망)

  • 김성식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.534-540
    • /
    • 1996
  • This paper presents an Adaptive Time-Delay Recurrent Neural Network (ATRN) for learning and recognition of temporal correlations of temporal patterns. The ATRN employs adaptive time-delays and recurrent connections, which are inspired from neurobiology. In the ATRN, the adaptive time-delays make the ATRN choose the optimal values of time-delays for the temporal location of the important information in the input parrerns, and the recurrent connections enable the network to encode and integrate temporal information of sequences which have arbitrary interval time and arbitrary length of temporal context. The ATRN described in this paper, ATNN proposed by Lin, and TDNN introduced by Waibel were simulated and applied to the chaotic time series preditcion of Mackey-Glass delay-differential equation. The simulation results show that the normalized mean square error (NMSE) of ATRN is 0.0026, while the NMSE values of ATNN and TDNN are 0.014, 0.0117, respectively, and in temporal learning, employing recurrent links in the network is more effective than putting multiple time-delays into the neurons. The best performance is attained bythe ATRN. This ATRN will be sell applicable for temporally continuous domains, such as speech recognition, moving object recognition, motor control, and time-series prediction.

  • PDF

LMI based criterion for reinforced concrete frame structures

  • Chen, Tim;Kau, Dar;Tai, Y.;Chen, C.Y.J.
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.407-412
    • /
    • 2020
  • Due to the influence of nonlinearity and time-variation, it is difficult to establish an accurate model of concrete frame structures that adopt active controllers. Fuzzy theory is a relatively appropriate method but susceptible to human subjective experience to decrease the performance. To guarantee the stability of multi-time delays complex system with multi-interconnections, a delay-dependent criterion of evolved design is proposed in this paper. Based on this criterion, the sector nonlinearity which converts the nonlinear model to multiple rule base of the linear model and a new sufficient condition to guarantee the asymptotic stability via Lyapunov function is implemented in terms of linear matrix inequalities (LMI). A numerical simulation for a three-layer reinforced concrete frame structure subjected to earthquakes is demonstrated that the proposed criterion is feasible for practical applications.