• Title/Summary/Keyword: multiple scales method

Search Result 137, Processing Time 0.025 seconds

Nonlinear Analysis of a Forced Beam with Internal Resonances (내부공진을 가진 보의 비선형 강제진동해석)

  • 이원경;소강영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1897-1907
    • /
    • 1991
  • An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies, .omega.$_{n}$. Three mode interactions, .omega.$_{2}$=3.omega.$_{1}$, and .omega.$_{3}$=.omega.$_{1}$+2.omega.$_{2}$, are considered and their influence on the response is studied. The case of two mode interaction, .omega.$_{2}$=3.omega.$_{1}$, is also considered in order to compare it with the case of three mode interactions. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. The method of multiple scales is applied to obtain steady-state responses of the system. Results of numerical investions show that there exists no significant difference between both modal interactions.

Nonlinear Analysis of a Forced Circular Plate with Internal Resonance (내부공진을 가진 원판의 비선형 강제진동해석)

  • 김철홍;이원경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2098-2110
    • /
    • 1992
  • An analysis is presented for the combination resonance of a clamped circular plate, which occurs when the frequency of the excitation is near the combination of the natural frequencies, that is, when ohm.=2.0mega./sub 1/+omega./sub 2/. The internal resonance, Omega./sub 3/=omega./sub 1/+2.omega./sub 2/, is considered and its influence on the response is studied. The clamped circular plate experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is used to obtain steady-state responses of the system. Results of numerical investigations show that the increase of the excitation amplitude can reduce the amplitudes of steady-state responses. We can not find this kind of results in linear systems.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation (매개 가진되는 얇은 외팔보의 비선형 진동 안정성)

  • Bang, Dong-Jun;Lee, Gye-Dong;Jo, Han-Dong;Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

FORECAST OF SOLAR PROTON EVENTS WITH NOAA SCALES BASED ON SOLAR X-RAY FLARE DATA USING NEURAL NETWORK

  • Jeong, Eui-Jun;Lee, Jin-Yi;Moon, Yong-Jae;Park, Jongyeop
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.209-214
    • /
    • 2014
  • In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.

APPAREL PRODUCTS RETRIEVAL SYSTEM BASED ON PSYCOLOGICAL FEATURE SPACE

  • Ohtake, Atsushi;Takatera, Masayuki;Furukawa, Takao;Shimizu, Yoshio
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.240-243
    • /
    • 2000
  • An apparel products retrieval system was proposed in which users can refer to products using Kansei evaluation values. The system adopts relevance feedback using history of the retrieval to learn the tendency of user evaluation. The system is based on a vector space retrieval model using products images expression as semantic scales. The system makes a query from user inputting information and retrieves closest products from the database. Revising algorithms of the difference method. linear multiple regression performed to investigate the effectiveness and criteria of the search. As a result of evaluation of the accuracy, it was found that the linear multiple regression and the neural network models are effective for the retrieval considering the individual Kansei.

  • PDF

On the Dynamic Stability of Rectangular Plates with Four Free Edges Subjected to Pulsating Follower Forces (맥동종동력이 작용하는 사각 자유경계판의 동적 안정성에 관한 연구)

  • 추연선;김지환
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.127-134
    • /
    • 1997
  • The dynamic stability of classical plates and Mindlin plates subjected to pulsating follower forces is investigated in this paper. Using the finite element method, the induced equation is reduced to that of one with finite degrees of freedom. Then, the multiple scales method is applied to analyze the dynamic instability region. The effects of aspect ratio, Poisson ratio, rotary inertia and shear deformation on the dynamic stability of plates are studied in this paper.

  • PDF