Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.1.051

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations  

Foroutan, Kamran (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology)
Ahmadi, Habib (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology)
Publication Information
Steel and Composite Structures / v.37, no.1, 2020 , pp. 51-73 More about this Journal
Abstract
The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.
Keywords
nonlinear vibrations; simultaneous resonance; spiral stiffened FG cylindrical shell; multiple scales method; nonlinear viscoelastic foundation; two-term excitation;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Wang, Y.Q., Huang, X.B. and Li, J. (2016), "Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process", Int. J.Mech. Sci., 110, 201-216. https://doi.org/10.1016/j.ijmecsci.2016.03.010.   DOI
2 Wang, Y.Q., Li, H.H., Zhang, Y.F. and Zu, J.W. (2018a), "A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid", Appl. Math. Model., 64, 55-70. https://doi.org/10.1016/j.apm.2018.07.016.   DOI
3 Wang, Y.Q., Liang, L. and Guo, X.H. (2013), "Internal resonance of axially moving laminated circular cylindrical shells", J. Sound Vib., 332, 6434-6450. https://doi.org/10.1016/j.jsv.2013.07.007.   DOI
4 Wang, Y.Q., Liu, Y.F. and Yang, T.H. (2019c), "Nonlinear Thermo-Electro-Mechanical Vibration of Functionally Graded Piezoelectric Nanoshells on Winkler-Pasternak Foundations Via Nonlocal Donnell's Nonlinear Shell Theory", Int. J. Struct. Stab. Dynam., 19(9), 1950100. https://doi.org/10.1142/S0219455419501001.   DOI
5 Wang, Y.Q. and Liu, Y.F. (2019), "Free vibration and buckling of polymeric shells reinforced with 3D graphene foams", Results in Phys., 14, 102510. https://doi.org/10.1016/j.rinp.2019.102510.   DOI
6 Wang, Y.Q., Ye, C. and Zu, J.W. (2018b), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.   DOI
7 Wang, Y.Q., Wan, Y.H. and Zu, J.W. (2019a), "Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence", Thin Wall. Struct., 135, 537-547. https://doi.org/10.1016/j.tws.2018.11.023.   DOI
8 Wang, Y.Q. (2014), "Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration", Nonlinear Dynam., 77(4), 1693-1707. https://doi.org/10.1007/s11071-014-1410-5.   DOI
9 Wang, Y.Q. and Yang, Z. (2017), "Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance", Nonlinear Dynam., 90(2), 1461-1480. https://doi.org/10.1007/s11071-017-3739-z.   DOI
10 Wang, Y.Q., Wan, Y.H. and Zhang, Y.F. (2017), "Vibrations of longitudinally traveling functionally graded material plates with porosities", Eur. J. Mech. A-Solid., 66, 55-68. https://doi.org/10.1016/j.euromechsol.2017.06.006.   DOI
11 Wang, Y.Q. and Zu, J.W. (2017a), "Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid," Int. J. Appl. Mech., 9(1), 1750005. https://doi.org/10.1142/S1758825117500053.   DOI
12 Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method", Arch. Appl. Mech., 89(11), 2335-2349. https://doi.org/10.1007/s00419-019-01579-0.   DOI
13 Wang, Y.Q., Ye, C. and Zu, J.W. (2019b), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.   DOI
14 Wang, Y.Q., Ye, Ch. and Zu, J.W. (2019d), "Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions", Int. J. Mech. Mater. Des., 15(2), 333-344. https://doi.org/10.1007/s10999-018-9415-8.   DOI
15 Wang, Y.Q. and Zu, J.W. (2017b), "Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates", Smart Mater. Struct., 26(10), 105014. https://doi.org/10.1088/1361-665X/aa8429.   DOI
16 Wang, Y.Q. and Zu, J.W. (2017c), "Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid", Compos. Struct., 164, 130-144. https://doi.org/10.1016/j.compstruct.2016.12.053.   DOI
17 Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., 20(5), 1087-1102. https://dx.doi.org/10.12989/scs.2016.20.5.1087.   DOI
18 Gao, K., Gao, W., Wu, D. and Song, C. (2017), "Nonlinear dynamic characteristics and stability of composite orthotropic plate on elastic foundation under thermal environment", Compos. Struct., 168, 619-632. https://doi.org/10.1016/j.compstruct.2017.02.054.   DOI
19 Gao, K., Gao, W., Wu, D. and Song, C. (2018b), "Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load", J. Sound Vib., 415, 147-168. https://doi.org/10.1016/j.jsv.2017.11.038.   DOI
20 Khayat, M., Dehghan, S.M., Najafgholipou,r M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735   DOI
21 Lezgy-Nazargah, M., Shariyat, M. and Beheshti-Aval, S.B. (2011), "A refined high-order global-local theory for finite element bending and vibration analyses of the laminated composite beams", Acta Mech., 217(3-4), 219-242. https://doi.org/10.1007/s00419-012-0621-9.   DOI
22 Abe, A., Kobayashi, Y. and Yamada, G. (2007), "Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance", J. Sound Vib., 304, 957-968. https://doi.org/10.1016/j.jsv.2007.03.009.   DOI
23 Wang, Y.Q. and Zu, J.W. (2017d), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.   DOI
24 Yas, M.H. and Garmsiri, K. (2010), "Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement", Steel Compos. Struct., 10(4), 349-360. https://doi.org/10.12989/scs.2010.10.4.349.   DOI
25 Li, F.M. and Yao, G. (2013), "1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow", Compos. Struct., 100, 249-256. https://doi.org/10.1016/j.compstruct.2012.12.035.   DOI
26 Li, X., Du, C.C. and Li, Y.H. (2018), "Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment", Appl. Math. Model., 59, 393-409. https://doi.org/10.1016/j.apm.2018.01.048.   DOI
27 Mahmoudkhani, S., Navazi, H.M. and Haddadpour, H. (2011), "An analytical study of the non-linear vibrations of cylindrical shells", Int. J. Nonlinear. Mech., 46, 1361-1372. https://doi.org/10.1016/j.ijnonlinmec.2011.07.012.   DOI
28 Ahmadi, H. (2018), "Nonlinear primary resonance of imperfect spiral stiffened functionally graded cylindrical shells surrounded by damping and nonlinear elastic foundation", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-018-0679-2.
29 Ahmadi, H. and Foroutan, K. (2019a), "Superharmonic and subharmonic resonances of spiral stiffened functionally graded cylindrical shells under harmonic excitation", Int. J. Struct. Stab. Dyn., https://doi.org/10.1142/S0219455419501141.
30 Ahmadi, H. and Foroutan, K. (2019b), "Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales", Thin Wall. Struct., 135, 33-44. https://doi.org/10.1016/j.tws.2018.10.028.   DOI
31 Ahmadi, H. and Foroutan, K. (2019c), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel Compos. Struct., 32(2), 253-264. https://doi.org/10.12989/scs.2019.32.2.253.   DOI
32 Mustafa, B.A.J. and Ali, R. (1989), "An energy method for free vibration analysis of stiffened circular cylindrical shells", Comput. Struct., 32, 355-363. https://doi.org/10.1016/0045-7949(89)90047-3.   DOI
33 Zhang, W., Liu, T., Xi, A. and Wang, Y.N. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049.   DOI
34 Zarouni, E., Rad, M.J. and Tohidi, H. (2014), "Free vibration analysis of fiber reinforced composite conical shells resting on Pasternak-type elastic foundation using Ritz and Galerkin methods", Int. J. Mech. Mater. Des., 10(4), 421-438. https://doi.org/10.1007/s10999-014-9254-1 .   DOI
35 Alijani, F., Amabili, M. and Bakhtiari-Nejad, F. (2011), "On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells", Int. J. Nonlinear. Mech., 46, 170-179. https://doi.org/10.1016/j.ijnonlinmec.2010.08.006.   DOI
36 Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002.   DOI
37 Dai, H.L., Dai, T. and Zheng, H.Y. (2013), "Creep buckling and post-buckling analyses for a hybrid laminated viscoelastic FGM cylindrical shell under in-plane loading", Int. J. Mech. Mater. Des., 9(4), 309-323. https://doi.org/10.1007/s10999-013-9223-0.   DOI
38 Nam, V.H., Phuong, N.T., Van Minh, K. and Hieu, P.T. (2018), "Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads", Eur. J. Mech. A-Solid., 72, 393-406. https://doi.org/10.1016/j.euromechsol.2018.06.005.   DOI
39 Nayfeh, A.H. and Mook D.T. (1995), Nonlinear Oscilations, John Wiley and Sons.
40 Pendhari, S.S., Kant, T., Desai, Y.M. and Subbaiah, C.V. (2012), "Static solutions for functionally graded simply supported plates", Int. J. Mech. Mater. Des., 8(1), 51-69. https://doi.org/10.1007/s10999-011-9175-1.   DOI
41 Pellicano F. (2007), "Vibrations of circular cylindrical shells: theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022.   DOI
42 Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., 60, 615-631. https://doi.org/10.12989/sem.2016.60.4.615.   DOI
43 Qin, Z. Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012.   DOI
44 Rodrigues, L., Goncalves, P.B. and Silva, F.M.A. (2017), "Internal resonances in a transversally excited imperfect circular cylindrical shell", Pro. Eng., 199, 838-843. https://doi.org/10.1016/j.proeng.2017.09.010.   DOI
45 Sarigul, M. and Boyaci, H. (2010), "Nonlinear vibrations of axially moving beams with multiple concentrated masses Part I: primary resonance", Struct. Eng. Mech., 36(2), 149-163. https://doi.org/10.12989/sem.2010.36.2.149.   DOI
46 Dat, N.D., Quan, T.Q. and Duc, N.D. (2019), "Nonlinear thermal vibration of carbon nanotube polymer composite elliptical cylindrical shells", Int. J. Mech. Mater. Des., 1-20. https://doi.org/10.1007/s10999-019-09464-y.
47 Du, C. and Li, Y. (2013), "Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments", Compos. Struct., 102, 164-174. https://doi.org/10.1016/j.compstruct.2013.02.028.   DOI
48 Duc, N.D., Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127.   DOI
49 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. http://dx.doi.org/10.12989/scs.2016.20.1.205.   DOI
50 Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., 66(3), 295-303. https://doi.org/10.12989/sem.2018.66.3.295.   DOI
51 Foroutan, K. and Ahmadi, H. (2020), "Nonlinear free vibration analysis of SSMFG cylindrical shells resting on nonlinear viscoelastic foundation in thermal environment", Appl. Math. Model., 85, 294-317. https://doi.org/10.1016/j.apm.2020.04.017.   DOI
52 Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel Compos. Struct., 32(4), 509-519. https://doi.org/10.12989/scs.2019.32.4.509.   DOI
53 Gao, K., Gao, W., Chen, D. and Yang, J. (2018a), "Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation", Compos. Struct., 204, 831-846. https://doi.org/10.1016/j.compstruct.2018.08.013.   DOI
54 Sheng, G.G. and Wang, X. (2018a), "Nonlinear vibrations of FG cylindrical shells subjected to parametric and external excitations", Compos. Struct., 191, 78-88. https://doi.org/10.1016/j.compstruct.2018.02.018.   DOI
55 Sheng, G.G. and Wang, X. (2018b), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56, 389-403.https://doi.org/10.1016/j.apm.2017.12.021.   DOI
56 Sofiyev, A.H. (2016), "Large amplitude vibration of FGM orthotropic cylindrical shells interacting with the nonlinear Winkler elastic foundation", Compos. Part B, 98, 141-50. https://doi.org/10.1016/j.compositesb.2016.05.018.   DOI
57 Sofiyev, A.H., Avcar, M., Ozyigit, P. and Adigozel, S. (2009), "The Free Vibration of non-homogeneous truncated conical shells on a winkler foundation", Int. J. Eng. Appl. Sci., 1, 34-41.
58 Van Dung, D. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid., 46 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008.   DOI
59 Sofiyev, A.H., Hui, D., Haciyev, V.C., Erdem, H., Yuan, G.Q., Schnack, E. and Guldal, V. (2017), "The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory", Compos. Part B, 116, 170-85. https://doi.org/10.1016/j.compositesb.2017.02.006.   DOI
60 Van Dung, D. and Hoa, L.K. (2013), "Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure", Thin Wall. Struct., 63,117-124. https://doi.org/10.1016/j.tws.2012.09.010.   DOI
61 Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronaut., 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.   DOI