• Title/Summary/Keyword: multiple micro process

Search Result 75, Processing Time 0.027 seconds

Acoustic Emission and Fracture Process of Hybrid HPFRCCs with Polyethylene Fiber and Steel Cord (PE 섬유와 강섬유를 사용한 하이브리드 HPFRCCs의 파괴특성 및 음향방출특성)

  • Kim, Sun-Woo;Jeon, Su-Man;Kim, Yong-Cheol;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.253-256
    • /
    • 2006
  • The HPFRCCs show the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior and of HPFRCCs and understand the micro-mechanism of cement matrix with reinforcing fiber. The objectives of this paper are to examine the compressive behavior, fracture and damage process of HPFRCC by acoustic emission technique. Total four series were tested, and the main variables were the hybrid type, polyethylene (PE) and steel cord (SC), and fiber volume fraction. The damage progress by compressive behavior of the HPFRCCs is characteristic for the hybrid fiber type and volume fraction. And from acoustic emission (AE) parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the ring-down count rate as compared with the first compressive load cycle.

  • PDF

GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments (GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘)

  • Kim, Jiyeon;Song, Moogeun;Kim, Jaehoon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.

Fabrication and Application of Micro Polymer Chip Platform for Rare Cell Sample Preparation (희귀 세포 샘플 준비를 위한 마이크로 폴리머 칩 플랫폼 제작 및 활용)

  • Park, Taehyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2018
  • In this paper, a new micro polymer chip platform and protocol were developed for rare cell sample preparation. The proposed platform and protocol overcome the current limitation of the dilution method which is based on statistics and the FACS method which expensive and requires fluorescence staining. It allows collecting exact number of target cells simply and selectively because the cells are visually confirmed during the collecting process. The collected cells can be transported or spiked into a desired locations, such as a microchamber, without cell loss. This research may applicable not only to a rare cell sample preparation for Lab on a Chip cancer diagnosis, but also to a single/double/multiple cell sample preparation for a cell analysis field. To verify this platform and protocol, five human breast cancer cells (MCF-7) were collected and transported into a hemocytometer chamber.

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb;Kim, Yark-Yeon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Lim, Byeong-Ok;Kim, Sung-Chan;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

Effects of Preparation Method and Evaluations on Structural Integrity in Model Antigen-Containing Biodegradable Microspheres for Vaccine Delivery

  • Cho Seong-Wan;Kim Young-Kwon
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2006
  • To demonstrate the effect of formulation conditions and evaluations of structural integrity from ovalbumin containing poly lactide glycolide copolymer (PLGA) microspheres for Vaccine delivery, OVA microspheres were prepared by a W/O/W multiple emulsion solvent extraction technique. Dichloromethan (DCM) and Ethyl acetate (EA) were applied as an organic phase and poly vinyl alcohol (PVA) as a secondary emulsion stabilizer. Microspheres were characterized for particle size, morphology (optical microscopy and Scanning Electron Microscope (SEM)). Protein denaturation was evaluated by size exclusion chromatography (SEC), SDS-PAGE and isoelectric focusing (IEF). Residual organic solvent was estimated by gas chromatography (GC) and differential scanning calorimetry (DSC). Optical photomicrograph and SEM revealed that micro spheres were typically spherical but various morphologies were observed. Mean particle size $(d_{vs})$ of microspheres were in the range of $3{\sim}50{\mu}m$. Also, The protein stability was not affected by the fonnulation process and residual organic solvent was beyond the detection below 0.1ppm. These results demonstrated that micro spheres might be a good candidate for the parenteral vaccine delivery system.

  • PDF

X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application (엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용)

  • Kim, Kanghyun;Kim, Jong Hyun;Nam, Hyoryung;Kim, Suhyeon;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.

A Study on the security demand and Handoff of the pocket Internet (Wibro) with MIPv6 (MIPv6 의한 휴대인터넷(Wibro)의 보안요구 및 Handoff에 관한 연구)

  • Lee, Cheong-Jin;Kim, Do-Hwan;Kwon, Oh-Heung
    • Journal of Digital Contents Society
    • /
    • v.7 no.3
    • /
    • pp.161-168
    • /
    • 2006
  • Wibro(Wibro - Wireless Broadband Internet ) is a system that can accept effectively the IP-based Wireless data traffic with upward / downward asymmetric transfer characteristic by using a Wirelss broadband transfer technology in OFDMA/TDD (Orthogonal frequency Division Multiple Access/Time Division Duplex). Wibro service should support handover to maintain connection continuously in movement because the service is based on If system which is different from cellular system. Current Micro Mobility system and general Mobile If system has got a problem of delayed speed and lost packets during handover. IETF protocol has been proposed for minimizing this problem and its standardization is under process, mainly focused on Mip4, Mip6 and Mipshop WG. This article studies and analyzes an effective method of minimizing handover delay to improve the problem of WiBro system and its revitalization & outlook.

  • PDF

Punching of Micro-Hole Array (미세 홀 어레이 펀칭 가공)

  • Son Y. K.;Oh S. I.;Rhim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

A Micro-observation on the Wing and Secondary Cracks Developed in Gypsum Blocks Subjected to Uniaxial Compression (일축압축상태의 석고 실험체에서 발생하는 날개크랙과 이차크랙에 대한 미시적 관측)

  • 사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2003
  • Wing and secondary cracks are unique types of cracks observed in rock masses subjected to uniaxial and biaxial compressive loading conditions. In this study, morphological features of wing and secondary cracks developed in gypsum specimens are investigated in the macro and micro scales. Along the path of wing crack, microtensile cracks are observed. Microtensile cracks coalesce with pores and show branch phenomenon. From the onset of the wing crack, multiple initiations of microtensile cracks are observed. Microtensile cracks show tortuous propagation paths and relatively constant aperture of the cracks during the propagation. It is shown that microtensile cracks propagate by splitting failure. At the micro scale, microfsults are observed in the path of the secondary cracks. Along the path of the secondary cracks, separation of grains and conglomerate grains, oblique microfaults, and irregular aperture of microfault are observed. These features show that the secondary cracks are produced in shear mode. The measured sizes of fracture process zone across the propagation direction near the tip of wing and secondary cracks range from 10$\mu{m}$ to 20$\mu{m}$ far wing cracks and from 100$\mu{m}$ to 200$\mu{m}$ for secondary cracks, respectively.

The Effect of Uncinate Process Resection on Subsidence Following Anterior Cervical Discectomy and Fusion

  • Lee, Su Hun;Lee, Jun Seok;Sung, Soon Ki;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.550-559
    • /
    • 2017
  • Objective : Subsidence is a frequent complication of anterior cervical discectomy and fusion. Postoperative segmental micromotion, thought to be a causative factor of subsidence, has been speculated to increase with uncinate process resection area (UPR). To evaluate the effect of UPR on micro-motion, we designed a method to measure UPR area based on pre- and postoperative computed tomography images and analyzed the relationship between UPR and subsidence as a proxy of micro-motion. Methods : We retrospectively collected clinical and radiological data from January 2011 to June 2016. A total of 38 patients (53 segments) were included. All procedures included bilateral UPR and anterior plate fixation. UPR area was evaluated with reformatted coronal computer tomography images. To reduce level-related bias, we converted UPR area to the proportion of UPR to the pre-operative UP area (pUPR). Results : Subsidence occurred in 18 segments (34%) and positively correlated with right-side pUPR, left-side pUPR, and the sum of bilateral pUPR (sum pUPR) (R=0.310, 301, 364; p=0.024, 0.029, 0.007, respectively). Multiple linear regression analysis revealed that subsidence could be estimated with the following formula : $subsidence=1.522+2.7{\times}sum\;pUPR$($R^2=0.133$, p=0.007). Receiver-operating characteristic analysis determined that sum $pUPR{\geq}0.38$ could serve as a threshold for significantly increased risk of subsidence (p=0.005, area under curve=0.737, sensitivity=94%, specificity=51%). This threshold was confirmed by logistic regression analysis for subsidence (p=0.009, odds ratio=8.471). Conclusion : The UPR measurement method confirmed that UPR was correlated with subsidence. Particularly when the sum of pUPR is ${\geq}38%$, the possibility of subsidence increased.