Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.3.217

Fabrication and Application of Micro Polymer Chip Platform for Rare Cell Sample Preparation  

Park, Taehyun (School of Mechanical Engineering, Kyungnam University)
Publication Information
Journal of the Korea Convergence Society / v.9, no.3, 2018 , pp. 217-222 More about this Journal
Abstract
In this paper, a new micro polymer chip platform and protocol were developed for rare cell sample preparation. The proposed platform and protocol overcome the current limitation of the dilution method which is based on statistics and the FACS method which expensive and requires fluorescence staining. It allows collecting exact number of target cells simply and selectively because the cells are visually confirmed during the collecting process. The collected cells can be transported or spiked into a desired locations, such as a microchamber, without cell loss. This research may applicable not only to a rare cell sample preparation for Lab on a Chip cancer diagnosis, but also to a single/double/multiple cell sample preparation for a cell analysis field. To verify this platform and protocol, five human breast cancer cells (MCF-7) were collected and transported into a hemocytometer chamber.
Keywords
Cell Collection; Micro Fabrication; Micro Polymer Chip; Rare Cell Sample; Sample Preparation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Zhu, X. L. Peh, H. M. Ji, C. Y. Teo, H. H. Feng, & W. T. Liu. (2007). Cell loss in integrated microfluidic device, Biomedical Microdevices, 9(5), 745-750. DOI : 10.1007/s10544-007-9085-z   DOI
2 Y. Kim et al. (2007). Novel platform for minimizing cell loss on separation process: Droplet-based magnetically activated cell separator, Review of Scientific Instruments, 78(7), 074301. DOI : 10.1063/1.2751414   DOI
3 A. L. Allan & M. Keeney. (2010). Circulating tumor cell analysis: Technical and statistical considerations for application to the clinic, Journal of Oncology, 2010. DOI : 10.1155/2010/426218   DOI
4 A. G. J. Tibbe, M. C. Miller &, L. W. Terstappen. (2007). Statistical considerations for enumeration of circulating tumor cells, Cytometry Part A, 71(3), 154-162. DOI : 10.1002/cyto.a.20369   DOI
5 M. Shackleton. (2010). Normal stem cells and cancer stem cells: Similar and different, Seminars in Cancer Biology, 20(2), 85-92. DOI : 10.1016/j.semcancer.2010.04.002   DOI
6 F. Guo et al. (2013). Probing cell-cell communication with microfluidic devices, Lab on a Chip, 13(16), 3152-3162. DOI : 10.1039/c3lc90067c   DOI
7 J. P. Frimat et al. (2011). A microfluidic array with cellular valving for single cell co-culture, Lab on a Chip, 11(2), 231-237. DOI : 10.1039/c0lc00172d   DOI
8 A. Gross, J. Schoendube, S. Zimmermann, M. Steeb, R. Zengerle, & P. Koltay. (2015). Technologies for single-cell isolation, International Journal of Molecular Sciences, 16(8), 16897-16919. DOI : 10.3390/ijms160816897   DOI
9 J. Y. Park, S. Takayama, & S. H. Lee. (2010). Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems, Integrative Biology, 2(5-6), 229-240. DOI : 10.1039/c000442a   DOI
10 K. Eyer, P. Kuhn, C. Hanke, & P. S. Dittrich. (2012). A microchamber array for single cell isolation and analysis of intracellular biomolecules, Lab on a Chip, 12(4), 765-772. DOI : 10.1039/c2lc20876h   DOI
11 B. F. Brehm-Stecher & E. A. Johnson. (2004). Single-cell microbiology: Tools, technologies, and applications, Microbiology and Molecular Biology Reviews, 68(3), 538-559. DOI : 10.1128/MMBR.68.3.538-559.2004   DOI
12 N. M. Badders, C. M. Alexander, H. Yu, & D. J. Beebe. (2008). Quantification of small cell numbers with a microchannel device, BioTechniques, 45(3), 321-325. DOI : 10.2144/000112906   DOI
13 A. R. Wheeler et al. (2003). Microfluidic device for single-cell analysis, Analytical Chemistry, 75(14), 3581-3586. DOI : 10.1021/ac0340758   DOI
14 C. H. Lin et al. (2015). A microfluidic dual-well device for high-throughput single-cell capture and culture, Lab on a Chip, 15(14), 2928-2938. DOI : 10.1039/c5lc00541h   DOI
15 T. Gerhardt, S. Woo, & H. Ma. (2011). Chromatographic behaviour of single cells in a microchannel with dynamic geometry, Lab on a Chip, 11(16), 2731-2737. DOI : 10.1039/c1lc20092e   DOI
16 L. G. Villa-Diaz et al. (2009). Microfluidic culture of single human embryonic stem cell colonies, Lab on a Chip, 9(12), 1749-1755. DOI : 10.1039/b820380f   DOI
17 H. Shadpour, J. S. Zawistowski, A. Herman, K. Hahn, & N. L. Allbritton. (2011). Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors, Analytica Chimica Acta, 696(1-2), 101-107. DOI : 10.1016/j.aca.2011.04.012   DOI
18 D. D. Carlo, L. Y. Wu, & L. P. Lee. (2006). Dynamic single cell culture array, Lab on a Chip, 6(11), 1445-1449. DOI : 10.1039/b605937f   DOI
19 C. Liberal et al. (2013). Integrated microfluidic device for single-cell trapping and spectroscopy, Scientific reports, 3, 1258. DOI : 10.1038/srep01258   DOI