DOI QR코드

DOI QR Code

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute) ;
  • Kim, Yark-Yeon (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute) ;
  • Han, Gee-Pyeong (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute) ;
  • Paek, Mun-Cheol (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute) ;
  • Kim, Hae-Sung (Millimeter-wave Innovation Technology Research Center, Dongguk University) ;
  • Lim, Byeong-Ok (Millimeter-wave Innovation Technology Research Center, Dongguk University) ;
  • Kim, Sung-Chan (Millimeter-wave Innovation Technology Research Center, Dongguk University) ;
  • Shin, Dong-Hoon (Millimeter-wave Innovation Technology Research Center, Dongguk University) ;
  • Rhee, Jin-Koo (Millimeter-wave Innovation Technology Research Center, Dongguk University)
  • Published : 2002.03.01

Abstract

A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

Keywords

References

  1. Y. Ito, A. L. Bleloch, and L. M. Brown, 'Nanofabrication of solid-state Fresnel lenses for electron optics', Nature, Vol.394, p.49, 1998 https://doi.org/10.1038/27863
  2. P. Yang, G. Wirnsberger, H. C. Huang, S. R. Cordero, M. D. McGehee, B. Scott, and T. Deng, 'Mirrorless lasing from mesostructured wave-guides patterned by soft lithography', Science, Vol.287, p.465, 2000 https://doi.org/10.1126/science.287.5452.465
  3. M. Li, J. C. H. Lin, M. J. Cherrill, and S. J. Sheard, 'Fabrication of submicrometre parallelogramic-shaped grating in $SiO_2$', Electron. Lett., Vol.30, p.2126, 1994 https://doi.org/10.1049/el:19941443
  4. R. Waldhddot ausl, B. Schnabel, E.-B. Kley, and A.Brauer, 'Efficient focusing polymer waveguide grating couplers', Electon. Lett., Vol.33, p.623, 1997 https://doi.org/10.1049/el:19970400
  5. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, 'Volume grating preferential-order focusing waveguide coupler', Opt. Lett,, Vol.15, p.1708, 1999
  6. S. Ura, T. Suhara, and H. Nishihara, 'Aberration characterizations of a fousing grating coupler in an integrated-optic disk pickup device', Appl. Opt., Vol.26, p.4777, 1987 https://doi.org/10.1364/AO.26.004777
  7. T. Suhara and H. Nishihara, 'Integrated optics components and devices using periodic structures' IEEE J. Quantum Electron., Vol.QE-22, p.845, 1986
  8. S. Sheard and T. Suhara, 'Integrated-optic im-plementation of a confocal scanning optical microscope', IEEE J. Lightwave Technol., Vol.11, No.8, p.1400, 1993 https://doi.org/10.1109/50.254101
  9. I. Kawakubo, J. Funazaki, K. Shirane, and A. Yoshizawa, 'Integrated optical-disk pickup that uses a focusing grating coupler with a high numerical aperture', Appl. Opt. Vol.33, p.6855, 1994 https://doi.org/10.1364/AO.33.006855
  10. T. Suhara. H. Nishihara, and J. Koyam, 'Waveguide holograms: A new approach to hologram integration', Opt. Commun., Vol.19, p.353, 1976 https://doi.org/10.1016/0030-4018(76)90097-3
  11. G. Hatakoshi, H. Fujima, and K. Goto, 'Waveguide grating lenses for optical couplers', Appl. Opt., Vol23, p.1749, 1984 https://doi.org/10.1364/AO.23.001749
  12. P. J. Cronkite and G. N. Lawrence, 'Focusing grating coupler design method using holographic optical elements', Appl. Opt., Vol.27, p.679, 1988 https://doi.org/10.1364/AO.27.000679
  13. R. $Waldh\ddot ausl$, B. Schnabel, and P. Dannberg, 'Efficient coupling into polymer waveguides by gratings', Appl. Opt, Vol.36, p.9383, 1997 https://doi.org/10.1364/AO.36.009383
  14. G. N. Lawrence and P. J. Cronkite, 'Physical optics analysics of the focusing gratings coupler', Appl. Opt., Vol.27, p.672, 1988 https://doi.org/10.1364/AO.27.000672
  15. J. Seligson, 'Modeling of a focusing grating coupler using vector scattering theory', Appl. Opt., Vol.27, p.684, 1988 https://doi.org/10.1364/AO.27.000684
  16. T. Ito and S. Okazaki, 'Pushing the limits of lithography', Nature, Vol.406, p.31, 2000
  17. B. Schnabel and E.-B. Kley, 'On the influence of the e-beam writer address grid on the optical quality of high-frequency gratings', Microelectron. Eng., Vol.57-58, p.327, 2001
  18. P. Laakkonen, J. Lautanen, M. Schirmer, and J. Turunen, 'Multilevel diffractive elements in $SiO_2$by electron beam lithography and proportional etching with analogue negative resist', J. Modern Opt., Vol.46, No.8, p.1295, 1999 https://doi.org/10.1080/09500349908231336
  19. P. Rai-Choudhury, 'Handbook of microlithography, micromachining, and microfabrication", SPIE Optical Engineering Press, 1997
  20. S. Nonogaki, 'Microlithography fundamentals in semiconductor devices and fabricadon technology', Marcel Dekker Inc., 1998
  21. K. A. Valiev, 'The physics of submicron litho-graphy', Plenum press, 1992
  22. G. Messina, A. Paoletti, S. Santangelo, and A. Tucciarone, 'Physical approximants to electron scattering', Microelectron. Eng., Vol. 34 p. 147, 1997 https://doi.org/10.1016/S0167-9317(97)82564-6
  23. A. A Svintsov and S. I. Zaitsev, 'Dose contribution of heating in electron-beam lithography', J. Vac. Sci Technol. B, Vol. 13, p. 2550, 1995 https://doi.org/10.1116/1.588391
  24. L. H. Veneklasen, 'Optimizing electron beam lithography writing strategy subject to electron, optical, pattern, and resist constraints' , J. Vac. Sci. Technol. B, Vol.9, p.3063,1991 https://doi.org/10.1116/1.585370
  25. M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, 'Charging and discharging of electron beam resist films', J. Vac. Sci. Technol. B, Vol.17, p.2893, 1999 https://doi.org/10.1116/1.591091
  26. T. P. Pearsall, 'Quantum semiconductor devices and technologies', Kluwer Academic Publishers, 2000
  27. M. Kddotohler, 'Etching in microsystem technology', Wiley-VCH, p.144, 1999
  28. S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, and K. Ronse, 'Metrology method for the correlation of line edge roughness for different resists before and after etch', Microelectron. Eng., Vol.57, p.665, 2001 https://doi.org/10.1016/S0167-9317(01)00458-0
  29. H. Ohki, T. Asari, H. Takemura, M. Isobe, and K. Moriya, 'Fabrication of grating patterns by e-beam lithography', Microelectron. Eng., Vol.9 p.235, 1989 https://doi.org/10.1016/0167-9317(89)90055-5
  30. U. Klein and F. $G\ddot otz$, 'Definition of geometries with complicated, curved boundaries for electron beam pattern generation', Microelectron. Eng., Vol.9, p.495, 1997
  31. D. C. Lee and J. K. Park, 'A study on the e-beam resist characteristics of plasma polymerized styrene', J. of KIEEME(in Korean), Vol.7, No.5, p.425, 1994
  32. S. G. Park, 'EIectric and electrochemical charac-teristic of PMMA-PEO gel electrolyte for re-chargeable Lithium battery', J. of KIEEME(in Korean), Vol.11, No.10, p.768, 1998
  33. K. Shin and J. W. Kim, 'The optical properties of amorphous germanium transmission grating', EID '99 digest paper, p.117, 1999