Browse > Article
http://dx.doi.org/10.4313/TEEM.2002.3.1.030

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography  

Kim, Tae-Youb (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute)
Kim, Yark-Yeon (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute)
Han, Gee-Pyeong (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute)
Paek, Mun-Cheol (Data Storage Device Team, Advanced Micro-Electronics Research Laboratory Electrics and Telecommunication Research Institute)
Kim, Hae-Sung (Millimeter-wave Innovation Technology Research Center, Dongguk University)
Lim, Byeong-Ok (Millimeter-wave Innovation Technology Research Center, Dongguk University)
Kim, Sung-Chan (Millimeter-wave Innovation Technology Research Center, Dongguk University)
Shin, Dong-Hoon (Millimeter-wave Innovation Technology Research Center, Dongguk University)
Rhee, Jin-Koo (Millimeter-wave Innovation Technology Research Center, Dongguk University)
Publication Information
Transactions on Electrical and Electronic Materials / v.3, no.1, 2002 , pp. 30-37 More about this Journal
Abstract
A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.
Keywords
Focusing grating coupler; Electron-beam lithography; Si$_3$N$_4$; Dry etching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Ito, A. L. Bleloch, and L. M. Brown, 'Nanofabrication of solid-state Fresnel lenses for electron optics', Nature, Vol.394, p.49, 1998   DOI   ScienceOn
2 P. Yang, G. Wirnsberger, H. C. Huang, S. R. Cordero, M. D. McGehee, B. Scott, and T. Deng, 'Mirrorless lasing from mesostructured wave-guides patterned by soft lithography', Science, Vol.287, p.465, 2000   DOI   ScienceOn
3 M. Li, J. C. H. Lin, M. J. Cherrill, and S. J. Sheard, 'Fabrication of submicrometre parallelogramic-shaped grating in $SiO_2$', Electron. Lett., Vol.30, p.2126, 1994   DOI   ScienceOn
4 R. Waldhddot ausl, B. Schnabel, E.-B. Kley, and A.Brauer, 'Efficient focusing polymer waveguide grating couplers', Electon. Lett., Vol.33, p.623, 1997   DOI   ScienceOn
5 S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, 'Volume grating preferential-order focusing waveguide coupler', Opt. Lett,, Vol.15, p.1708, 1999
6 H. Ohki, T. Asari, H. Takemura, M. Isobe, and K. Moriya, 'Fabrication of grating patterns by e-beam lithography', Microelectron. Eng., Vol.9 p.235, 1989   DOI   ScienceOn
7 U. Klein and F. $G\ddot otz$, 'Definition of geometries with complicated, curved boundaries for electron beam pattern generation', Microelectron. Eng., Vol.9, p.495, 1997
8 I. Kawakubo, J. Funazaki, K. Shirane, and A. Yoshizawa, 'Integrated optical-disk pickup that uses a focusing grating coupler with a high numerical aperture', Appl. Opt. Vol.33, p.6855, 1994   DOI
9 T. Suhara. H. Nishihara, and J. Koyam, 'Waveguide holograms: A new approach to hologram integration', Opt. Commun., Vol.19, p.353, 1976   DOI   ScienceOn
10 G. Hatakoshi, H. Fujima, and K. Goto, 'Waveguide grating lenses for optical couplers', Appl. Opt., Vol23, p.1749, 1984   DOI   ScienceOn
11 P. J. Cronkite and G. N. Lawrence, 'Focusing grating coupler design method using holographic optical elements', Appl. Opt., Vol.27, p.679, 1988   DOI
12 R. $Waldh\ddot ausl$, B. Schnabel, and P. Dannberg, 'Efficient coupling into polymer waveguides by gratings', Appl. Opt, Vol.36, p.9383, 1997   DOI   ScienceOn
13 G. N. Lawrence and P. J. Cronkite, 'Physical optics analysics of the focusing gratings coupler', Appl. Opt., Vol.27, p.672, 1988   DOI
14 J. Seligson, 'Modeling of a focusing grating coupler using vector scattering theory', Appl. Opt., Vol.27, p.684, 1988   DOI
15 T. Ito and S. Okazaki, 'Pushing the limits of lithography', Nature, Vol.406, p.31, 2000
16 S. Nonogaki, 'Microlithography fundamentals in semiconductor devices and fabricadon technology', Marcel Dekker Inc., 1998
17 L. H. Veneklasen, 'Optimizing electron beam lithography writing strategy subject to electron, optical, pattern, and resist constraints' , J. Vac. Sci. Technol. B, Vol.9, p.3063,1991   DOI
18 K. A. Valiev, 'The physics of submicron litho-graphy', Plenum press, 1992
19 G. Messina, A. Paoletti, S. Santangelo, and A. Tucciarone, 'Physical approximants to electron scattering', Microelectron. Eng., Vol. 34 p. 147, 1997   DOI   ScienceOn
20 A. A Svintsov and S. I. Zaitsev, 'Dose contribution of heating in electron-beam lithography', J. Vac. Sci Technol. B, Vol. 13, p. 2550, 1995   DOI
21 M. Bai, R. F. W. Pease, C. Tanasa, M. A. McCord, D. S. Pickard, and D. Meisburger, 'Charging and discharging of electron beam resist films', J. Vac. Sci. Technol. B, Vol.17, p.2893, 1999   DOI   ScienceOn
22 T. P. Pearsall, 'Quantum semiconductor devices and technologies', Kluwer Academic Publishers, 2000
23 M. Kddotohler, 'Etching in microsystem technology', Wiley-VCH, p.144, 1999
24 S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, and K. Ronse, 'Metrology method for the correlation of line edge roughness for different resists before and after etch', Microelectron. Eng., Vol.57, p.665, 2001   DOI   ScienceOn
25 S. G. Park, 'EIectric and electrochemical charac-teristic of PMMA-PEO gel electrolyte for re-chargeable Lithium battery', J. of KIEEME(in Korean), Vol.11, No.10, p.768, 1998
26 K. Shin and J. W. Kim, 'The optical properties of amorphous germanium transmission grating', EID '99 digest paper, p.117, 1999
27 S. Sheard and T. Suhara, 'Integrated-optic im-plementation of a confocal scanning optical microscope', IEEE J. Lightwave Technol., Vol.11, No.8, p.1400, 1993   DOI   ScienceOn
28 D. C. Lee and J. K. Park, 'A study on the e-beam resist characteristics of plasma polymerized styrene', J. of KIEEME(in Korean), Vol.7, No.5, p.425, 1994
29 S. Ura, T. Suhara, and H. Nishihara, 'Aberration characterizations of a fousing grating coupler in an integrated-optic disk pickup device', Appl. Opt., Vol.26, p.4777, 1987   DOI
30 T. Suhara and H. Nishihara, 'Integrated optics components and devices using periodic structures' IEEE J. Quantum Electron., Vol.QE-22, p.845, 1986
31 P. Rai-Choudhury, 'Handbook of microlithography, micromachining, and microfabrication", SPIE Optical Engineering Press, 1997
32 B. Schnabel and E.-B. Kley, 'On the influence of the e-beam writer address grid on the optical quality of high-frequency gratings', Microelectron. Eng., Vol.57-58, p.327, 2001
33 P. Laakkonen, J. Lautanen, M. Schirmer, and J. Turunen, 'Multilevel diffractive elements in $SiO_2$by electron beam lithography and proportional etching with analogue negative resist', J. Modern Opt., Vol.46, No.8, p.1295, 1999   DOI   ScienceOn