• 제목/요약/키워드: multiple fuzzy systems

Search Result 254, Processing Time 0.023 seconds

Fuzzy Modeling Technique of Nonlinear Dynamic System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • 소명옥;류길수;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme (퍼지-신경망 기반 고장진단 시스템의 설계)

  • Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

Multiobjective fuzzy control system using reinforcement learning

  • Oh, Kang-Dong;Bien Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.4-110
    • /
    • 2002
  • In practical control area, there are many examples with multiple objectives which may conflict or compete with each other like overhead crane control, automatic train operation, and refuse incinerator plant control, etc. These kinds of control problems are called multiobjective control problems, where it is difficult to provide the desired performance with control strategies based on single-objective optimization. Because the conventional control theories usually treat the control problem as the single objective optimization problem , the methods are not adequate to treat the multiobjective control problems. Particularly, in case of large scale systems or ill-defined systems, the multiple obj..

  • PDF

Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA (HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형(非線型) 시스템의 퍼지 모델링 기법과 안정도(安定度) 해석(解析)에 관한 연구)

  • Lee, J.T.;So, M.O.;Lee, S.S.;Ji, S.J.;Kim, T.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.801-803
    • /
    • 1995
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptation controllers which guarrantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Evaluation criterion for different methods of multiple-attribute group decision making with interval-valued intuitionistic fuzzy information

  • Qiu, Junda;Li, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3128-3149
    • /
    • 2018
  • A number of effective methods for multiple-attribute group decision making (MAGDM) with interval-valued intuitionistic fuzzy numbers (IVIFNs) have been proposed in recent years. However, the different methods frequently yield different, even sometimes contradictory, results for the same problem. In this paper a novel criterion to determine the advantages and disadvantages of different methods is proposed. First, the decision-making process is divided into three parts: translation of experts' preferences, aggregation of experts' opinions, and comparison of the alternatives. Experts' preferences aggregation is considered the core step, and the quality of the collective matrix is considered the most important evaluation index for the aggregation methods. Then, methods to calculate the similarity measure, correlation, correlation coefficient, and energy of the intuitionistic fuzzy matrices are proposed, which are employed to evaluate the collective matrix. Thus, the optimal method can be selected by comparing the collective matrices when all the methods yield different results. Finally, a novel approach for aggregating experts' preferences with IVIFN is presented. In this approach, experts' preferences are mapped as points into two-dimensional planes, with the plant growth simulation algorithm (PGSA) being employed to calculate the optimal rally points, which are inversely mapped to IVIFNs to establish the collective matrix. In the study, four different methods are used to address one example problem to illustrate the feasibility and effectiveness of the proposed approach.

Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation (HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Information measures for generalized hesitant fuzzy information

  • Park, Jin Han;Kwark, Hee Eun;Kwun, Young Chel
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • In this paper, we present the entropy and similarity measure for generalized hesitant fuzzy information, and discuss their desirable properties. Some measure formulas are developed, and the relationships among them are investigated. We show that the similarity measure and entropy for generalized hesitant fuzzy information can be transformed by each other based on their axiomatic definitions. Furthermore, an approach of multiple attribute decision making problems where attribute weights are unknown and the evaluation values of attributes for each alternative are given in the form of GHFEs is investigated.

Design of Takagi-Sugeno Fuzzy Controllers for Nonlinear Systems using LMIs (선형행렬부등식을 이용한 비선형 시스템의 TS 퍼지 제어기 설계)

  • Kim, Jin-Sung;Choy, Ick;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2398-2400
    • /
    • 2000
  • In this paper, we consider multi-objective synthesis of fuzzy controllers for a widely used special class of the Takagi-Sugeno(TS) fuzzy systems. We propose a new fuzzy controller utilizing the strategy of rescaling and show that synthesis of the proposed controllers satisfying multiple design objectives can be reduced to a simple linear matrix inequality(LMI) problem. Finally, an application to an inverted pendulum on a cart is presented to illustrate the validity of the proposed method.

  • PDF