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Abstract 
 

A number of effective methods for multiple-attribute group decision making (MAGDM) with 
interval-valued intuitionistic fuzzy numbers (IVIFNs) have been proposed in recent years. 
However, the different methods frequently yield different, even sometimes contradictory, 
results for the same problem. In this paper a novel criterion to determine the advantages and 
disadvantages of different methods is proposed. First, the decision-making process is divided 
into three parts: translation of experts’ preferences, aggregation of experts’ opinions, and 
comparison of the alternatives. Experts’ preferences aggregation is considered the core step, 
and the quality of the collective matrix is considered the most important evaluation index for 
the aggregation methods. Then, methods to calculate the similarity measure, correlation, 
correlation coefficient, and energy of the intuitionistic fuzzy matrices are proposed, which are 
employed to evaluate the collective matrix. Thus, the optimal method can be selected by 
comparing the collective matrices when all the methods yield different results. Finally, a novel 
approach for aggregating experts’ preferences with IVIFN is presented. In this approach, 
experts’ preferences are mapped as points into two-dimensional planes, with the plant growth 
simulation algorithm (PGSA) being employed to calculate the optimal rally points, which are 
inversely mapped to IVIFNs to establish the collective matrix. In the study, four different 
methods are used to address one example problem to illustrate the feasibility and effectiveness 
of the proposed approach. 
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1 Introduction 

With the drastic development of current management science and systems engineering, 
many multiple-attribute group decision making (MAGDM) problems have become 
increasingly complex. Because of their limited knowledge of the research areas related to the 
problem and lack of relevant information, as well as because of time pressure, experts or 
decision makers cannot accurately express their opinions. Thus, it is quite difficult or 
unrealistic to translate experts’ preferences into crisp numbers or linguistics. To obtain a more 
accurate expert preference, many researchers have focused on the study of MAGDM with 
fuzzy information (such as interval-valued fuzzy numbers (IVFN) and interval-valued 
intuitionistic fuzzy numbers (IVIFN)). Since then, the IFS and IVIFS have been widely 
applied to MAGDM problems, because of their effectiveness and veracity in expressing fuzzy 
information. Wan and Dong developed an interval-valued intuitionistic fuzzy (IVIF) 
mathematical programming method for hybrid MAGDM that considers alternative 
comparisons by using hesitancy degrees [1]. Qi, Liang, and Zhang focused on MAGDM with 
unknown expert and attribute weights under an IVIF environment. In their paper, they 
proposed a maximizing optimization model to objectively obtain unknown attribute weights, 
and they developed an integrated algorithm to ascertain unknown expert weights [2]. Ye 
proposed novel methods using an entropy weights-based correlation coefficient for IFSs and 
IVIFSs to identify the best alternative among the results for MAGDM problems [3]. Yue 
proposed several excellent methods for determining the weights of experts in MAGDM based 
on an extended technique for order preference by similarity to an ideal solution (TOPSIS) [4]. 
Prakash developed Multi-Attribute Intuitionistic Fuzzy Group Decision Method (MAIFGDM) 
using TOPSIS for the selection of the suitable candidate network[5]. Liu and Li developed an 
approach for determining the integrated weights of experts based on interval-valued 
preference matrices [6]. Practical application of multiple attribute group decision making and 
fuzzy information can be found in [7-14] 

The above methods provide various ideas for addressing MAGDM with IVIFS information. 
However, different methods always yield different results for the same example. For instance, 
propose there are five evacuation plans when natural disasters strike and results aggregated by 
different methods are contradictory, then a useful evaluation criterion can select the best 
alternative fleetly. However, to the best of our knowledge, thus far little attention has been 
paid to evaluating the advantages and disadvantages of these methods. Therefore, this paper 
proposes a novel evaluation methodology for various aggregation algorithms. First, the 
process of group decision making is divided into three stages: translation of experts’ 
preferences, aggregation of experts’ opinions (i.e., establishing the collective matrix), and 
selection of the best alternative. The process of experts’ preferences aggregation is the core 
step in these three parts, because the accuracy rating of the collective matrix embodies the 
quality of the experts’ preferences aggregation. All the methods referenced in this paper are 
based on the MAGDM under the IVIFS environment and employ an intuitionistic fuzzy 
weighted arithmetic aggregation (IIFWA) operator to calculate the program score. Thus, the 
second step of all these methods varies. Then, when the order of the alternatives is different, 
the correctness of the different methods can be evaluated by comparing the accuracy rating of 
their collective matrices. This paper proposes novel methods to calculate the total weighted 
Hamming distance, total similarity measure, total correlation coefficient, and energy of the 
collective matrix. Then, the accuracies of the different collective matrices established by 
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various aggregation methods are obtained. The more accurate the collective matrix, the more 
effective is the aggregation method. Additionally, a new approach for aggregating experts’ 
preferences with IVIFNs is described in this paper. The IVIFNs of each expert preference 
matrix are mapped into two-dimensional planes, and thus, the membership degree and 
non-membership degree of each IVIFS are considered as points in the dimensional plane. 
Therefore, the aggregation of experts’ preferences is converted to point aggregation, and the 
relationship between two experts’ preferences is expressed as the distance between two points. 
The preference points for the same attribute of the same alternative are considered a point set. 
The plant growth simulation algorithm (PGSA) is employed to calculate the optimal point, that 
is, the point the sum of the distances of which to all the other points in its point set is shortest. 
The optimal point can describe the experts’ comprehensive opinion and achieve Pareto 
optimality in theory. All the optimal points are employed to establish the collective matrix. So 
that the comparison experiment would be reasonable, an IIFWA operator is used to evaluate 
alternatives in the collective matrix. 

The remainder of this paper is organized as following. Section 2 introduces the 
preliminaries, including, the IVIFS, the concept of an optimal rally point, and the principles of 
the PGSA. Section 3 presents the concept of the evaluation criterion in detail and focuses on 
the calculation process of the total weighted Hamming distance, total similarity measure, total 
correlation coefficient, and the energy of the collective matrix. Section 4presents the 
aggregation idea of the proposed aggregation method. Finally, four aggregation methods are 
employed to handle a practical example in Section 5. The most credible result is selected by 
applying the proposed evaluation criterion. Section 6 concludes the paper. 

2 Preliminaries 

2.1 Basic notions of interval-valued intuitionistic fuzz set 

An IVIFS A  in a finite universe of discourse { }1 2, , , nX x x x=   is an object in the form  

{ }, ( ), ( ) |A AA x x x x Xµ ν= ∈
 

 , 

where [ ] [ ]( ) : ( ), ( ) 0,1 ( ) : ( ), ( ) 0,1L U L U
A A A A A Ax x x x x xµ µ µ ν ν ν   = ⊂ = ⊂        

， , and 

( ) ( ) 1U U
A Ax xµ ν+ ≤
 

. The interval numbers, ( ) and ( )A Ax xµ n
 

 , respectively denote the 

membership and non-membership degree of tox A . Additionally, ( ) ( ) ( ),L U
A A Ax x xπ π π =    

, 

where ( ) ( ) ( ) ( ) ( ) ( )1 and 1L U U U L L
A A A A A Ax x x x x xπ µ n π µ n= − − = − −
     

 and. The interval number 

( )A xπ


 is called the degree of indeterminacy of x to A . Operation theorems of  IVIFSs have 
been shown in Appendix. 

Definition 1. Let ( )1i i nω ≤ ≤  represent the weights of the elements ix X∈ , which satisfy 

the normalized conditions [ ] 1
0,1 and 1n

i ii
ω ω

=
∈ =∑ . Wan and Dong defined the weighted 

Minkowski distance between IVIFSs and BA  as 
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( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) )

1

1

1,
4

.

n q qL L U U
q i B BA A

i

q qL L U U
B BA A

qq qL L U U
B BA A

d A B x x x x

x x x x

x x x x

ω µ µ µ µ

nnnn  

π π π π

=


= − + −


+ − + −

+ − + − 

∑    

   

   

 

          
(1) 

When 1, 2, andq q q= = → +∞ , the corresponding ( ) ( )1 2, , ,d A B d A B   ,and 

( ),d A B+∞
  represent the weighted Hamming, Euclidean, and Chebyshev distances, 

respectively [15]. 
Definition 2.Xu and Chen defined a similarity measure that combines the distance 

measures of the IFSs ( ) ( ), and ,A A B BA Bµ n µ n= = : 

( )
( )

( ) ( )
,

, , , IFS( ).
, ,

c

c

d A B
S A B A B X

d A B d A B
= ∈

+
               

(2)
 

where ( ) ( ), ,0 , 1c
B BB S A Bν µ= ≤ ≤ . In particular, if ( ), then , 1A B S A B= =  [16]. 

 Similarly, the following equation defines the weighted similarity measure of IVIFSs 
A and B : 

( ) ( )
( ) ( )

1

1 1

,
, , IVIFS( ).

, ,

c

c

d A B
S A B A B X

d A B d A B
= ∈

+

 

  

  

              
(3)

 
For , , IVIFS( )A B C X∈  , the similarity measure satisfies 

( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

S1 , 0 ;

S2 , 1 ;

S3 , , ;

S4 for all , , IVIFS , if , then , , , , , .

cS A B A B

S A B A B

S A B S B A

A B C X A B C S A C S A B S A C S B C

= ⇔ =

= ⇔ =

=

∈ ⊆ ⊆ ≤ ≤

  

  

  

            

    Definition 3.Bustince and Burillo [17] defined the correlation of , IVIFSs( )A B X∈   as 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

,

1 ,
2

n
L L U U L L U U

i i i i i i i i iB B B BA A A A
i

C A B

x x x x x x x x x Xµ µ µ µ nnnn  
=

=

 
+ + + ∈ 

 
∑        

 

, 
(4)

 
and defined the correlation coefficient between A and B by 

( ) ( )
( ) ( )

,
,

, ,

C A B
K A B

C A A C B B
=

⋅

 

 

   

.                   
  (5)

 
For , IVIFS( )A B X∈  , the correlation coefficient satisfies 
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( ) ( )
( ) ( ) ( )
( ) ( )

K1 if , then , 1;

K2 , , ;

K3 0 , 1;

A B K A B

K A B K B A

K A B

= =

=

≤ ≤

  

  

 

 

Definition 4.Park and Kwun [18] defined the informational intuitionistic energy of each 
IVIFS( )A X∈  as  

( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2 2 2

1 2

L U L U L Un
i i i i i iA A A A A A

i

E A

x x x x x xµ µ nn  π π

=

=

+ + + + +
∑      



   

(6)
 

where ( )ix X∈ . 

For , IVIFS( )A B X∈  ,the function E satisfies the conditions 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

E1 for all IVIFS ;

E2 for all IVIFS ;

E3 if is less fuzzy then .

cE A E A A X

E A n A X

E A E B A B

= ∈

≤ ∈

≤

  

 

  

 

Definition 5.Xu first proposed the IIFWA operator. Let 

( ) ( ), , , 1j j j j ja b c d j na    = ≤ ≤    be a collection of IVIFNs, and let IIFWA: nΘ Θ→  .If 

( )

( ) ( )

1 2 1 1 2 2

1 1 1 1

IIFWA , , ,

1 1 ,1 1 , , ,j j j j

n n n

n n n n

j j j j
j j j j

a b c d

ω

ω ω ω ω

a a a ωa ω a ω a

= = = =

= ⊕ ⊕ ⊕

    
= − − − −         

∏ ∏ ∏ ∏

     
 

            
(7) 

then IIFWA is called an IVIF weighted averaging operator of dimension n, where 
( )T

1 2, , , nω ω ω ω=  is the weight vector of ( ) [ ] 1
1 , with 0,1 , and 1.n

j j jj
j na ww

=
≤ ≤ ∈ =∑  

 Let [ ] [ ]( ), , ,a b c da = be an IVIFN; then, 

( ) ( )1
2

s a c b da = − + −

                       
(8) 

is a score of α , where ( ) [ ]1,1s α ∈ − . The larger the score ( )s α , the greater is the IVIFN 
α [19]. 
 

2.2 Multiple-attribute group decision making with interval-valued intuitionistic 
fuzzy preference information 

In the MAGDM problem, a number of experts are involved to evaluate several alternatives 
with multiple attributes. Because of their time pressure and lack of information and personal 
willingness, experts cannot easily provide an accurate assessment of the information. Thus, it 
is unreasonable to express experts’ preferences by a crisp number. Therefore, many 
researchers focused on the MAGDM with IVIF preference information.  
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Suppose there are k experts applying interval-valued intuitionistic numbers (1 )td t kij ≤ ≤  
to evaluate the ith alternative with the jth characteristic; then, the expert preference matrices 
[ ]tD are constructed as  

11 11 11 11 1 1 1 1

1 1 1 1

[ ] [ ]

([ , ] , [ , ]) ([ , ] , [ , ])

([ , ] , [ , ]) ([ , ] , [ , ])

t
t ij i j

L U L U L U L U
j j j j

L U L U L U L U
i i i i ij ij ij ij

D d

µ µ ν ν µ µ ν ν

µ µ ν ν µ µ ν ν

×= =

 
 
 
 
 






  



.          

(9) 

Different authors employ their own methods, such as an interval-valued intuitionistic fuzzy 
hybrid aggregation(IIFHA) operator, projection method, IIFHG operator, and 
MULTIMOORA method, to construct the collective matrix. The collective matrix[ ]D  can 
comprehensively reflect experts’ preferences, and is given by 

11 11 1 1

1 1

( , ) ( , )
[ ] [ ]

( , ) ( , )

j j

ij i j

i i ij ij

D d
µ ν µ ν

µ ν µ ν
×

 
 

= =  
 
 

  





  

  
 .                

(10)

 
In this study, PGSA is employed to calculate the optimal rally point first. Then, the optimal 

aggregation points of all point sets are used to establish the collective matrix. 

2.3 Optimal rally point 

Definition 6.Let { } ( ), , , 31 2P P P P nn= ≥ be a point set in a bounded closed box in a 

two-dimensional plane. ( )1P i ni ≤ ≤ is a weighted point, the corresponding positive weights 

of which are [ ]
1

0,1 , and 1
n

i i
i

ξ ξ
=

∈ =∑ . If a point *P  exists, the Euclidean distances of which 

to the other given points meet the condition 

( ) ( ) ( ) ( )2 2 2 2* * * * *
1 1

1
= min min

n

i n n
i

D P P x a y b x a y b
=

 = − + − + + − + − 
 

∑ 

, 
(11)

 
then we define *P  as the optimal rally point (see Fig. 1). 

 
Fig. 1. Optimal rally point 
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The optimal rally point achieves Pareto optimality. In this study, experts’ preferences are 
mapped as points into the two-dimensional plane, thus allowing the distance between two 
points to be expressed by the degree of similarity between two experts’ preferences. In our 
method, we aggregate experts’ preferences by calculating the optimal rally point. Then, we 
establish the collective matrix by inverse mapping the optimal rally point. 

With the increment of points on the plane, the difficulty for searching the optimal rally point 
grows exponentially. In this study, a plant growth simulation algorithm (PGSA) is used to 
solve this problem. 

… 
2.4 Plant growth simulation algorithm (PGSA) 
The PGSA, a heuristic algorithm based on the plant growth mechanism, is first proposed by a 
Chinese scholar, Li. It is less sensitive to parameter sets and its data are not needed for coding 
and decoding. The PGSA has been widely applied in numerous fields, such as distribution 
system optimization planning, facility location, transmission network optimal planning, 
optimal capacitor placement, and RFID network planning[20-24], because of its accuracy, 
high-efficiency, and flexibility. 
 
2.4.1 Principles of plant growth 
Most plants are phototropic. Many nodes exist on the trunk and a new branch always grows 
from a node that is located toward the sun. The closer their location to the sun, the higher the 
morphactin concentration of the branches, and branches having a higher morphactin 
concentration have a greater opportunity to have a new growth node. This growth mechanism 
is repeated until the plant is fully formed. The morphactin concentration distribution and the 
process of plant growth are shown in Fig. 2 and Fig. 3, respectively. 

 
Fig. 2. Morphactin concentration distribution 

 
Fig. 3. Process of plant growth 
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Additionally, the morphactin concentration of each node and branch in the plant is updated 
as the new stems grow. During the entire growth process, the morphactin concentration of 
each branch is determined by the environmental information of the node from which it grows; 
it depends on the branch’s relative position on the plant and is not determined in advance. 

 
2.4.2 Probabilistic model of plant growth simulation algorithm 

The entire growing space of the plant is regarded as a feasible domain in the probabilistic 
model of PGSA. The point closest to the light source is the global optimum point. The 
procedure for searching the optimal point is the same as the process of plant growth. First, one 
point,x0, is randomly selected as the root and the trunk M grows from it. Suppose there are t 
nodes, 1 2, , ,M M MtS S S ,on the trunk having growth hormone concentrations 1 2, , ,M M MtC C C . 

( )1MiC i t≤ ≤ is given by 

( ) ( )

( ) ( )( )
( )

0

0

1

1Mi
Mi t

Mi
i

f x f S
C i t

f x f S
=

−
= ≤ ≤

−∑
,                           (12) 

where ( )0f x  is the backlight function for describing the environment of point x0. The shorter 

the distance between X and the light source, the smaller the value of ( )0f x . The function 
value decreases as the illumination of the growth node increases. 

1
1

t

Mi
i

C
=

=∑ is clearly derived from Eq. (12). Then, a special roulette (see Fig. 4) is established 

according to this feature. Thus, this roulette can be employed to select a new growth node. 

 
Fig. 4. Special roulette 

The node MiS occupies its own area on the roulette. A random number  is selected in the 
interval [0,1],a method that is similar to throwing a ball onto a state map. It will land in the area 
of one of 1 2, , ,M M MtS S S . The corresponding node ( )1MkS k t≤ ≤ ,which is the preferential 
growth node, will take priority to grow a new branch in the next step. 

It is assumed that a new branch m grows from MkS , which has r nodes, namely, 

1 2, , ,m m mrS S S . The growth hormone concentrations of the nodes on branch mare 
1 2, , ,m m mrC C C . According to the principle of plant growth, the morphactin concentration of 

each node in the plant is updated after each new round of branch growth. After branch m has 
grown, the concentrations of the nodes on trunk M (except SMk) and branch m need to be 
recalculated. Meanwhile, CMi and Cmj can be calculated by 
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0

0 0

1 1

0

0 0

1 1

( ) ( )

( ( ) ( )) ( ( ) ( ))
(1 ,1 , )

( ) ( )

( ( ) ( )) ( ( ) ( ))

Mi
Mi t r

Mi nj
i j

nj
mj t r

Mi nj
i j

f x f SC
f x f S f x f S

i t j r i k
f x f S

C
f x f S f x f S

= =

= =

 −
=

 − + −
 ≤ ≤ ≤ ≤ ≠

− =
− + −



∑ ∑

∑ ∑
.     

(13) 

1, 1
1

t r

Mi mj
i i k j

C C
= ≠ =

+ =∑ ∑ can evidently be derived from Eq. (13). A new roulette is established as in 

the previous step. All the nodes on trunk M (except SMk) and branch m respectively occupy 
their own range on the roulette, one among which is selected as the new growth point for a new 
branch.  

The growth process is repeated until the new branch reaches the optimal point. The PGSA 
cannot easily fall into local optimum, because the morphactin concentrations of all nodes are 
updated during each growth step. 

3 Evaluation criteria 
MAGDM with IVIF information is investigated in this study. Each expert’s preferences are 
described as IVIF matrices. Through the aggregation of expert preference matrices, various 
aggregation methods always yield a different collective matrix (see Fig. 5).The quality of the 
collective matrix has a strong influence on the result. This section focuses on the relationship 
and distance among IVIF matrices. In addition, a novel method for evaluating a collective 
matrix is proposed. 

 
Fig. 5. Establishmentof the collective matrix 

 
Let us examine  Eq. (1).The weighted Hamming distance between IVIF matrices is defined 

as ( )( ) ( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( ) ( ) ( )( )( )1 1 1 1 1 2 2 2 2 2
1 2, , , and , , ,

m n m n

L U L U L U L U
ij ij ij ij ij ij ij ij ij ijm n m nm n m n

D d D dmmnnmmnn      
× ×× ×× ×

       = = = =       
 

  and
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:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )

1 2 1 2
1 2

1 1

1 2 1 2

1 2 1 2

1,
4m n m n

m n
L L U U

ij ij ij ij ij
i j

L L U U
ij ij ij ij

L L U U
ij ij ij ij

d D D x x x x

x x x x

x x x x

d mmmm  

nnnn  

π π π π

× ×
= =

= − + −

+ − + −

+ − + −

∑∑ 

,     

 (14)

 
where ( )1 ,1ij i m j nδ ≤ ≤ ≤ ≤ represents the weight elements ( )k

ij kd D∈
 , which satisfy the 

normalized conditions [ ] 1 1
0,1 and 1m n

ij iji j
d d

= =
∈ =∑ ∑ . 

 Similarly to Eq. (3), the following equation defines the similarity measure between 
1 2and

m n m n
D D

× ×
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( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2
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c
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d d d

d d d d d d

× ×

× ×

× × × ×

= =

= =

=
+

  
 =

  +     

∑ ∑

∑ ∑

 

 

   

 

   

.            

(15)

 
The closer the two matrices, the more similar they will be. 
Let 1 2 3, and

m n m n m n
D D D

× × ×

   be intuitionistic fuzzy matrices. The similarity measure satisfies 

( )
( )
( )

( ) ( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2 2 1

1 2 3 1 3 1 2 1 3 2 3

S1' ( , ) 0 ;

S2' ( , ) 1 ;

S3' ( , ) ( , );

S4' , then , , , , , .

m n m n m n m n

m n m n m n m n

m n m n m n m n

m n m n m n m n m n m n m n m n m n m n m n

cS D D D D

S D D D D

S D D S D D

D D D S D D S D D S D D S D D

× × × ×

× × × ×

× × × ×

× × × × × × × × × × ×

= ⇔ =

= ⇔ =

=

⊆ ⊆ ≤ ≤

   

   

   

          

 

In this paper, we propose the correlation ( )1 2,
m n m n

C D D
× ×

  and correlation 

coefficient ( )1 2 1 2, between and
m n m n m n m n

K D D D D
× × × ×

     as 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

(1) (2) (1) (2) (1) (2) (1) (2)

1 1

,

1 ,
2

m n m n

m n
L L U U L L U U

ij ij ij ij ij ij ij ij
i j

C D D

x x x x x x x xmmmmnnnn      

× ×

= =

=

 
+ + + 

 
∑∑

 

(16)

 

( ) ( )
( ) ( )

1 2
1 2

1 1 2 2

,
,

, ,
m n m n

m n m n

m n m n m n m n

C D D
K D D

C D D C D D
× ×

× ×

× × × ×

=
⋅

 

 

   

                

(17)

 
These equations are similar to Eqs. (4) and (5).  

Let 1 2and
m n m n

D D
× ×

   be two intuitionistic fuzzy matrices. The correlation coefficient 
satisfies the following. 
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( ) ( )
( ) ( ) ( )
( ) ( )

1 2 1 2

1 2 2 1

1 2

K1' f , then , 1;

K2' , , ;

K3' 0 , 1.

m n m n m n m n

m n m n m n m n

m n m n

i D D K D D

K D D K D D

K D D

× × × ×

× × × ×

× ×

= =

=

≤ ≤

   

   

 

 

Let us examine Eq. (6).This paper provides the calculation of energy ( )1m n
E D

×

  of 

intuitionistic fuzzy matrix 1D : 

( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

1

2 2 2 2 2 2

1 1 2

m n

L U L U L Um n
ij ij ij ij ij ij

i j

E D

x x x x x xmmnn    π π

×

= =

=

+ + + + +
∑∑



     

 (18)

 
For intuitionistic fuzzy matrices 1 2and

m n m n
D D

× ×

  ,the energy satisfies the following conditions. 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1 1

1

1 2 1 2is less fuzzy t

E1' ;

E2' ;

E3 i h' f a .n

m n m n

m n

m n m n m n m n

cE D E D

E D n

E D E D D D

× ×

×

× × × ×

=

≤

≤

 



   

; 

The various aggregation methods always yield a different collective intuitionistic fuzzy 
matrix m nD ×

 .In this study, we comparatively evaluated their qualities by calculating the 
similarity measure, correlation coefficient, and energy of all the experts’ preferences matrices. 

Let ( ) ( )( ) ( ), , , 1 ,1 ,1
m n

t tL tU tL tU
t ij ij ij ij ijD d i m j n t kmmnn  
×

   = = ≤ ≤ ≤ ≤ ≤ ≤   


 be the preferences 

matrices proposed by k experts, ( ) ( ) ( )ˆ ˆ ˆandm n m n m nd D S D K D× × ×
  ， ， be the total weighted 

Hamming distance, total similarity measure, and total correlation coefficient, respectively, of 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, and . Tbe the energy o hen, , , , af ndm n m n m n m n m n m n m nD E D D d D S D K D E D× × × × × × ×
       can 

be calculated as  

( ) ( )
1

ˆ ,
m n

k

m n m n t
t

d D d D D
×× ×

=

= ∑  

                                  
(19)

 

( ) ( )
1

ˆ ,
m n

k

m n m n t
t

S D S D D
×× ×

=

= ∑                                     (20) 

( ) ( )
1

ˆ ,
m n

k

m n m n t
t

K D K D D
×× ×

=

= ∑                                                                      (21) 

( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2 2 2

1 1

=

2

m n

L U L U L Um n
ij ij ij ij ij ij

i j

E D

x x x x x xmmnn    π π

×

= =

+ + + + +
∑∑



    

(22)
 

Greater values of ( ) ( )ˆ ˆandm n m nS D K D× ×
   indicate a higher quality of the collective matrix 

m nD ×
 . A smaller value of ( )m nE D ×

  indicates a less fuzzy degree of m nD ×
 . The accuracy of 

different aggregation methods can be evaluated by comparing ( ) ( ) ( )ˆ ˆ , andm n m n m nS D K D E D× × ×
  ， , 

when they yield different orders of programs. 
For instance, two aggregation methods are employed to solve the same MAGDM with 
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IVIFSs. Different operators are employed to establish the collective matrix m nD ×
 . Method A 

finally yielded the order of five programs, 1Y – 5Y ,as 3 5 2 4 1Y Y Y Y Y   

, and Method B 
yielded 1 2 3 4 5Y Y Y Y Y    . Then, the more reliable result can be obtained by using the 
following criteria. 
(C1): ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, andA m n B m n A m n B m n A m n B m nS D S D K D K D E D E D× × × × × ×> > <       

 ⇒A is much more accurate than B; 
(C2): ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ 0A m n B m n A m n B m nS D S D K D K D× × × ×− − − >     and ( ) ( )A m n B m nE D E D× ×<   

 ⇒A is more accurate than B; 
(C3): ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ 0A m n B m n A m n B m nS D S D K D K D× × × ×− − − >     and ( ) ( )A m n B m nE D E D× ×>   

 ⇒A is slightly more accurate than B; 
(C4): ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, andA m n B m n A m n B m n A m n B m nS D S D K D K D E D E D× × × × × ×> > >       
⇒A is slightly more accurate than B, while B is less fuzzy than A. 

4 Proposed algorithm 
This study employed PGSA to establish the collective matrix for MAGDM with IVIFSs. The 
aggregation idea and core steps of the proposed algorithm are introduced in this section. 
 
4.1 Aggregation idea 

In MAGDM, the preference information of thetth ( )1< <t k  expert can be expressed by the 
matrix 

( ) ( )= , 1 ;1 ;1t t
ij m n

D d i m j n t k
×

  ≤ ≤ ≤ ≤ ≤ ≤  .               
(23)

 
The expert preference is expressed by an IVFN. Equation (21) can be expressed as 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
= = ,

= , , , , 1 ;1 ;1

t t t t
ij ij ijm n

t L t U t L t U
ij ij ij ij

D d

i m j n t k

mn

mmnn  

×
   
   

  ≤ ≤ ≤ ≤ ≤ ≤                  

(24)

 
We establish two two-coordinates to aggregate membership degree information and 

non-membership degree information, respectively. As can be seen in Fig. 6(a), the 

membership degree interval-valued numbers of characteristic C1 in alternative A1 ( )
11

kµ  
proposed by k experts are projected into a two-dimensional coordinate, where ( )L xµ  is 

considered to be the abscissa axis and ( )U xµ  is considered to be the vertical axis. Fig. 6(a) 

shows that non-membership degree interval-valued numbers ( )
11

kν  can also be projected. 
The membership degree optimal rally point 11µ  and the non-membership degree optimal rally 
point 11ν  can be determined by using PGSA (see Fig. 6(a) and 6(b)). From the inverse 
mapping relationship, the coordinate value of the optimal rally point can be translated easily 
into the interval-valued number of aggregation preference information. 
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This method is used to find the optimal rally point of all the expert preferences and obtain 

the expert preference aggregation matrix[ ]D : 

11 11 1 1

1 1

( , ) ( , )
[ ] [ ]

( , ) ( , )

j j

ij i j

i i ij ij

D d
µ ν µ ν

µ ν µ ν
×

 
 

= =  
 
 

  





  

  


                 

(25)

 
 
4.2 Core step 

Suppose there are n known membership degree points 1 2( , , ..., )n Eµ µ µ ∈ , where E is the 
bounded closed box in RN having length l. The corresponding positive weights of these points 
are 1 2, ,..., nξ ξ ξ . To search the optimal rally point µ , the core steps of PGSA are as follows. 

Step 1:Determine the initial growth point 0x x∈ and the step lengthλ (it is set atl/200 in 
this study), where 1 2( , ,..., )mx x x x= is the vector group of box E. Set 0 0

min min, ( )X x F f x= = , 

where 0( )f x  is the backlight function of 0x . 

Step 2: Set 0x  as the thought center, draw line segments parallel to the x axis and y axis, 
and then extend 0 0 0

1 1 1 2 2 2, ,..., m m ma x b a x b a x b≤ ≤ ≤ ≤ ≤ ≤  as new branches. 
Search

1 1 1 1

0 0
1 1 1 1from the branches in , whe(1 ,1 ) ise the thri j i jS i m j k S jλ≤ ≤ ≤ ≤  growth point in 

the 1i th branch. 
Step 3: Compare

1 1 1 1 1 1 1 1

0 0 0 0
min min min min( ) and . If ( ) , then , ( ).i j i j i j i jf S F f S F X S F f S≤ = =  

min minOtherwise, keep and unchanged.X F  

Step 4: If 1 1

0 0( ) ( )i jf x f S≤ , then its growth hormone concentration is 0
1 1

0
i jS

C = ;otherwise, 

employ Eq.(24) to calculate 0
1 1i jS

C
: 

1 1
0

11 1

1 1
1 1

0 0

0 0

1 1

( ) ( )

[ ( ) ( )]
i j

i j
kS m

i j
i j

f x f S
C

f x f S
= =

−
=

−∑∑
                        

(26)

 
Step 5: Use the growth hormone concentrations of all the growth points to establish a 

morphactin concentration state map between 0 and 1. A random number 0δ  is selected in this 
interval, if  

Fig. 6(b). Non-membership degree coordinate Fig. 6(a). Membership degree coordinate 
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1 1 1 1

0 0
1 1 1 1

1 1 1 1

1

0
1 1 1 1

i j i j

r t r t

S S
i j i j

C Cδ
−

= = = =

< ≤∑∑ ∑∑
.                      

(27)
 

Then, select
1 1 1 1

0 1 0 1 1
min minas the new growth point; set , and ( ).r t r tS x S X x F f x= = =,  

Step 6: Set 1x  as the thought center, draw line segments parallel to the x axis and y axis, 
and then extend 1 1 1

1 1 1 2 2 2, ,..., m m ma x b a x b a x b≤ ≤ ≤ ≤ ≤ ≤ as new branches. Search 

1 1

1
2 2 1(1 ,1 )i jS i m j k≤ ≤ ≤ ≤ in the branches inλ . 

Step 7: Compare
2 2 2 2 2 2 2 2

1 1 1 1
min min min min( ) . ( ) , , ( ).i j i j i j i jf S and F If f S F then X S F f S≤ = = and minF . 

Otherwise, keep min minandX F  unchanged. 
Step 8: Calculate 0 1

1 1 2 2i j i jS S
C and C . 

If ( )0 01 1 1 1 1 1

0 1 otherwise, employ Equation 28  t( ) ( ) then 0; :o calculate
i j i j

i j S S
f x f S C C≤ =，  

1 1
0

1 21 1

1 1 2 2
1 1 1 1

0 0

0 0 0 1

1 1 1 1

( ) ( )

[ ( ) ( )] [ ( ) ( )]
i j

i j
k kS m m

i j i j
i j i j

f x f S
C

f x f S f x f S
= = = =

−
=

− + −∑∑ ∑∑
           

(28)

 
If 1 12 2 2 2 2 2

0 1 otherwise, employ Equat( ) ( ), then 0; (ion 29  to calculat) :e
i j i j

i j S S
f x f S C C≤ =  

2 2
1

1 22 2

1 1 2 2
1 1 1 1

0 1

0 0 0 1

1 1 1 1

( ) ( )

[ ( ) ( )] [ ( ) ( )]
i j

i j
k kS m m

i j i j
i j i j

f x f S
C

f x f S f x f S
= = = =

−
=

− + −∑∑ ∑∑
           

(29)

 
Step 9: Use the growth hormone concentrations of all the growth points to establish a 

morphactin concentration state map between 0 and 1. A random number 1δ  is selected in this 
interval. If 

2 2 2 2

0 0
1 1 1 1

1 1 1 1

1

1
1 1 1 1

i j i j

r t r t

S S
i j i j

C Cδ
−

= = = =

< ≤∑∑ ∑∑
,                       

(30)
 

then select 1 1

0
r tS as the new growth point, where set

1 1

2 0 2 2
min min, and ( )r tx S X x F f x= = = ; 

otherwise, if 
1 2 2 1 2 2

0 1 0 1
1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1

1

1
1 1 1 1 1 1 1 1

i j i j i j i j

k r t k r tm m

S S S S
i j i j i j i j

C C C Cδ
−

= = = = = = = =

+ < ≤ +∑∑ ∑∑ ∑∑ ∑∑
,           

(31)
 

then select 

2 2 1 1

1 2 1 2 2
min minas the new growth point, whe , , and ( )rer t r tS x S X x F f x= = =  are set. 

Step 10: Repeat Steps 6 to 9, until minF  remains unchanged. Then, *
minx X=  is the globally 

optimal solution; set *xµ = , and the calculation is stopped. 
 

5 Illustrative example 
In this section, the performance of the proposed method is evaluated according to a case that 
was first presented by Herrera and then modified by Xu[25]. 
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5.1 Experimental process and result 
Suppose that an individual intends to buy a car.Expert ( 1,2,3,4)ke k =  uses 

IVIFN ( , 1,2,3,4,5)k
ijd i j =  to describe the characteristics ( 1,2,3,4,5)jC j =  of each 

supplier. ( 1,2,3,4,5)iA i= = , the weight vector of four experts is T(0.3,0.2,0.3,0.2)ζ =  , 

and the weight vector of five characteristics is T(0.2,0.15,0.2,0.3,0.15)ω = .  
Step 1.The IVIF decision matrices proposed by four experts 

( )
5 5[ ] ( 1,2,3,4)k

k ijD d k×= =
  are indicated as 

 

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

1 2 3 4 5

1

2

31

4

5

C                 C                 C                C                 C

( 0.3,0.4 , ( 0.5,0.6 , ( 0.6,0.7 , ( 0.7,0.8 ,
A 0.4,0.6 ) 0.1,0.2 ) 0.2,0.3 ) 0.0,0.1 )

( 0.6,0.8 , ( 0.6,0.7 , ( 0.2,0.3 ,
A 0.1,0.2 ) 0.2,0.3 ) 0.

A

A

A

D =

[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

( 0.6,0.7 ,

0.2,0.3 )

( 0.5,0.6 , ( 0.7,0.8 ,

4,0.6 ) 0.1,0.3 ) 0.0,0.2 )

( 0.5,0.8 , ( 0.7,0.8 , ( 0.5,0.5 , ( 0.2,0.3 , ( 0.4,0.

0.1,0.2 ) 0.0,0.1 ) 0.4,0.5 ) 0.2,0.4 )

( 0.2,0.3 , ( 0.5,0.7 , ( 0.6,0.7 , ( 0.4,0.5 ,

0.4,0.5 ) 0.1,0.3 ) 0.1,0.2 ) 0.1,0.3 )

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

6 ,

0.2,0.3 )

( 0.6,0.9 ,

0.0,0.1 )

( 0.6,0.8 , ( 0.3,0.5 , ( 0.4,0.6 , ( 0.6,0.8 , ([0.5,0.6],

0.1,0.2 ) 0.4,0.5 ) 0.3,0.4 ) 0.1,0.2 ) [0.2,0.3])

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

1 2 3 4 5

1

2

32

4

5

C                 C                 C                C                 C

( 0.4,0.5 , ( 0.5,0.6 , ( 0.6,0.7 , ( 0.7,0.8 ,
A 0.3,0.4 ) 0.1,0.2 ) 0.2,0.3 ) 0.1,0.2 )

( 0.6,0.8 , ( 0.5,0.6 , ( 0.4,0.5 ,
A 0.1,0.2 ) 0.3,0.4 ) 0.

A

A

A

D =

[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

( 0.7,0.8 ,

0.0,0.2 )

( 0.4,0.6 , ( 0.4,0.7 ,

3,0.4 ) 0.3,0.4 ) 0.1,0.3 )

( 0.5,0.6 , ( 0.5,0.7 , ( 0.5,0.6 , ( 0.3,0.4 , ( 0.6,0.

0.3,0.4 ) 0.1,0.2 ) 0.3,0.4 ) 0.2,0.5 )

( 0.5,0.6 , ( 0.7,0.8 , ( 0.4,0.5 , ( 0.5,0.7 ,

0.3,0.4 ) 0.0,0.1 ) 0.2,0.4 ) 0.1,0.2 )

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

7 ,

0.2,0.3 )

( 0.5,0.7 ,

0.2,0.3 )

( 0.4,0.7 , ( 0.5,0.6 , ( 0.3,0.6 , ( 0.6,0.8 , ([0.4,0.5],

0.2,0.3 ) 0.2,0.4 ) 0.3,0.4 ) 0.1,0.2 ) [0.2,0.3])

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
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[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

1 2 3 4 5

1

2

33

4

5

C                 C                 C                C                 C

( 0.4,0.6 , ( 0.5,0.7 , ( 0.5,0.6 , ( 0.6,0.8 ,
A 0.3,0.4 ) 0.0,0.2 ) 0.2,0.4 ) 0.1,0.2 )

( 0.5,0.8 , ( 0.3,0.5 , ( 0.3,0.6 ,
A 0.1,0.2 ) 0.2,0.3 ) 0.

A

A

A

D =

[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

( 0.4,0.7 ,

0.2,0.3 )

( 0.4,0.5 , ( 0.3,0.6 ,

2,0.4 ) 0.2,0.4 ) 0.2,0.3 )

( 0.5,0.6 , ( 0.5,0.8 , ( 0.4,0.7 , ( 0.2,0.4 , ( 0.5,0.

0.0,0.1 ) 0.1,0.2 ) 0.2,0.3 ) 0.2,0.3 )

( 0.5,0.7 , ( 0.4,0.6 , ( 0.3,0.5 , ( 0.7,0.9 ,

0.1,0.3 ) 0.0,0.1 ) 0.2,0.4 ) 0.0,0.1 )

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

8 ,

0.0,0.2 )

( 0.3,0.5 ,

0.2,0.2 )

( 0.7,0.8 , ( 0.4,0.6 , ( 0.4,0.7 , ( 0.3,0.5 , ([0.6,0.7],

0.0,0.1 ) 0.0,0.2 ) 0.2,0.3 ) 0.1,0.3 ) [0.1,0.2])

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]

1 2 3 4 5

1

2

34

4

5

C                 C                 C                C                 C

( 0.3,0.4 , ( 0.8,0.9 , ( 0.7,0.8 , ( 0.4,0.5 ,
A 0.4,0.5 ) 0.1,0.1 ) 0.1,0.2 ) 0.3,0.5 )

( 0.5,0.7 , ( 0.4,0.7 , ( 0.4,0.5 ,
A 0.1,0.3 ) 0.2,0.3 ) 0.

A

A

A

D =

[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

( 0.2,0.4 ,

0.3,0.6 )

( 0.6,0.8 , ( 0.2,0.3 ,

2,0.2 ) 0.1,0.2 ) 0.0,0.1 )

( 0.2,0.4 , ( 0.4,0.5 , ( 0.5,0.8 , ( 0.4,0.6 , ( 0.5,0.

0.1,0.2 ) 0.2,0.4 ) 0.0,0.1 ) 0.2,0.3 )

( 0.7,0.8 , ( 0.5,0.7 , ( 0.6,0.7 , ( 0.4,0.5 ,

0.0,0.2 ) 0.1,0.2 ) 0.1,0.3 ) 0.1,0.2 )

[ ]
[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

6 ,

0.2,0.3 )

( 0.7,0.8 ,

0.1,0.2 )

( 0.5,0.6 , ( 0.5,0.8 , ( 0.4,0.7 , ( 0.3,0.6 , ([0.7,0.8],

0.2,0.4 ) 0.0,0.2 ) 0.2,0.3 ) 0.2,0.3 ) [0.0,0.1])

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 
Step2.Map the interval-valued membership degree numbers and non-membership degree 

numbers into two-dimensional coordinates and employ PGSA to aggregate the expert 
preference decision matrices into the collective matrix D : 
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[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

1 2 3 4 5

1

2

3

4

5

C                         C                         C                        C                          C

( 0.350,0.481 , ( 0.558,0.692 , ( 0.598,0.698 , ( 0.605
A 0.349,0.473 ) 0.067,0.180 ) 0.181,0.302 )

A

A

A

A

D =

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

,0.740 ,

0.105,0.228 )

( 0.551,0.774 , ( 0.467,0.630 , ( 0.318,0.484 , ( 0.471,0.617 ,

0.100,0.226 ) 0.227,0.327 ) 0.272,0.413 ) 0.175,0.328 )

( 0.439,0.626 , ( 0.526,0.719 , ( 0.465,0.648 , ( 0.259

0.132,0.233 ) 0.095,0.213 ) 0.234,0.335 )
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

( 0.463,0.655 ,

0.185,0.345 )

( 0.392,0.589 ,

0.071,0.218 )

,0.412 , ( 0.497,0.685 ,

0.200,0.378 ) 0.134,0.266 )

( 0.469,0.604 , ( 0.503,0.686 , ( 0.478,0.603 , ( 0.510,0.657 , ( 0.527

0.196,0.348 ) 0.048,0.171 ) 0.147,0.316 ) 0.073,0.191 )
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

,0.743 ,

0.113,0.193 )

( 0.548,0.737 , ( 0.423,0.617 , ( 0.373,0.652 , ( 0.449,0.681 , ([0.545,0.646],

0.122,0.241 ) 0.142,0.320 ) 0.248,0.348 ) 0.126,0.247 ) [0.127,0.227])

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step3. Obtain the comprehensive attribute matrix D by using the IIFWA operator to 

separately aggregate the data on each line in D : 
  

[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )

1

2

3

4

5

0.5335,0.6710 , 0.1516,0.2865A
0.4494,0.6321 , 0.1552,0.3000A
0.4206,0.6048 , 0.1599,0.2915A

A 0.4972,0.6564 , 0.1025,0.2345
A 0.4682,0.6740 , 0.1462,0.2702

D

 
 
 
 

=  
 
 
  
 





 
Step4. Employ Eq. (14) to obtain the alternatives’ scores ( ) ( 1, 2,3, 4,5)iS A i = : 

1 2 3 4 5( ) 0.383106, ( ) 0.31315, ( ) 0.286989, ( ) 0.4083, ( ) 0.362932S A S A S A S A S A= = = = =     ，  
Thus, 

4 1 5 2 3A A A A A     
Therefore, the best alternative is 4A . 

The experiment is iterated 900 times. Fig. 7 shows the simulation curve of ( )d̂ D , ( )Ŝ D , 

( )K̂ D , and ( )E D .  
In Fig. 7(a), the red solid line denotes the total weighted Hamming distance between the 

collctive matrix and expert preference matrices, and the blue dotted line denotes the distance is 
2.94 when the number of iterations is 700. In the subsequent iterations, the distance converges 
roughly, which means that the proposed algorithm obtains the optimal collective matrix. Fig. 
7(b) denotes the energy of collective matrix and Fig. 7(a) denotes the total similarity measure 
(red solid line) and the total correlation coefficient (blue solid line) between the collctive 
matrix and expert preference matrices. The blue dotted lines denote their convergent values, 
resprctively. The conclusion of Fig. 7(a) is demonstrated from Fig. 7(b) and Fig. 7(c). 
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Fig. 7(a). Simulation curve of ( )d̂ D  

 
Fig. 7(b). Simulation curve of ( )Ŝ D  

 

 
Fig. 7(c). Simulation curve of ( )K̂ D , and ( )E D  

 
5.2 Accuracy comparison 

The PGSA method, the IIFHA operator, the IIFHG operator, and a group 
decision-making method proposed by Ye [3] were respectively employed to solve the same 
example. Then, different results were obtained: 

( )
( )
( )

4 1 5 2 3

1 4 5 2 3

4 1 5 2 3

1 PGSA ;

2 IIFHA ;

3 IIFHG ;

A A A A A

A A A A A

A A A A A

   

   

   

：

：

：
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 (4) The method proposed by Ye: 5 4 1 2 3A A A A A    . 
Then, Eqs. (19)–(22) are employed to calculate ( ) ( ) ( ) ( )ˆ ˆ ˆ, , , andd D S D K D E D     of the 

collective matrices established by the different methods (see Table 1). 
 

Table 1. Accuracy comparison 
 ( )d̂ D  ( )Ŝ D  ( )K̂ D  ( )E D  

PGSA 2.948834 0.7631189 3.89039071 11.47649 
IIFHA 3.29775 0.75861615 3.85841822 12.30863 
IIFHG 2.967163 0.75980447 3.88809729 11.40351 

Ye’s method 3.48762 0.71467303 3.83492642 12.50786 
The table shows that the orders of the programs obtained by PGSA and IIFHG are more 

credible, than those of the other methods. PGSA is more accurate than IIFHG and IIFHG is 
less fuzzy than PGSA. 

6. Conclusion 
A novel evaluation criterion for judging the accuracy of results in an MAGDM problem with 
IVIFN information is proposed in this paper. Different aggregation methods are suitable for 
different cases. The proposed criterion is able to select the best aggregation method easily, 
when the aggregation results are different. In addition, in this paper, a PGSA is proposed to 
solve an MAGDM problem with IVIFN information, which employs optimal rally points to 
establish the collective matrix and obtain a more accurate result compared with the typical 
methos. All these procedures are illustrated using a classical example that was first presented 
by Herrera. 
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Appendix 

Theorem 1.Let , ( ), ( )A AA x x xµ ν=
 

  and , ( ), ( )B BB x x xµ ν=
 

  be two IVIFSs in X , and 
x X∈ . Then, we stipulate: 

(1) ( ) ( ){ }, ,c
A AA x x xν µ=
 

 ; 

(2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , and ,L L U U L L U U
B B B BA A A AA B x x x x x x x xµ µ µ µ nnnn   ⊆ ⇔ ≤ ≤ ≥ ≥

       

  ; 
(3) A B A B= ⇔ ⊆   and A B⊇  . 
Theorem 2.Let , ( ), ( )A AA x x xµ ν=

 

  and , ( ), ( )B BB x x xµ ν=
 

  be two IVIFSs in X , where 
x X∈ , and 0λ > and 0m > . Then, the operational relations are defined as 

 
( ) ( ) ( ) ( ){ , ,L L L L

B BA AA B x x x x xµ µ µ µ+ = + − ⋅    

 

 

                       ( ) ( ) ( ) ( ) ,U U U U
B BA Ax x x xµ µ µ µ + − ⋅                                                  (32) 

( ) ( ) ( ) ( ) },L L U U
B BA Ax x x xν ν ν ν ⋅ ⋅     .                                            

{ ( ) ( ) ( ) ( ), , ,L L U U
B BA AA B x x x x xµ µ µ µ ⋅ = ⋅ ⋅    

 

 
( ) ( ) ( ) ( ) ,L L L L

B BA Ax x x xν ν ν ν + − ⋅    

                                                 (33) 
( ) ( ) ( ) ( ) }U U U U

B BA Ax x x xν ν ν ν + − ⋅     .                                         

( ) ( ){ } ( ) ( ){ }{ , min , ,min , ,L L U U
B BA AA B x x x x xmmmm    =     

 



 
( ) ( ){ } ( ) ( ){ } }max , ,max ,L L U U

B BA Ax x x xν ν ν ν     

.                          (34) 

( ) ( ){ } ( ) ( ){ }{ , max , ,max , ,L L U U
B BA AA B x x x x xmmmm    =     

 



 
( ) ( ){ } ( ) ( ){ } }min , ,min ,L L U U

B BA Ax x x xnnnn        

.                             (35) 
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( )( ) ( )( ) }

, 1 1 ,1 1 ,

, .

L U
A A

L U
A A

A x x x

x x

λ λ

λ λ

λ µ µ

ν ν

 = − − − −  

 
  

 

 
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