• Title/Summary/Keyword: multimodal imaging

Search Result 50, Processing Time 0.032 seconds

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Molecular imaging application of iron oxide nanoradiomaterial

  • Ran Ji Yoo;Ji Yong Park;Tae Hyeon Choi;Jin Sil Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 2021
  • Various iron oxide nanoparticle-based radiomaterials(IO-NRM) can be used for multimodal imaging of magnetic resonance imaging and molecular imaging, can be easily sized, can be easily functionalized, and have biocompatibility, making them a very good platform for molecular imaging. Based on the previously revealed molecular imaging technology of iron oxide nanoparticles, this paper introduces the in vivo distribution and use in various diseases through iron oxide nanoparticles-based radiolabeled compounds for diagnosis and treatment of iron oxide nanoparticles-based molecular imaging platforms. We would like to look forward to its potential as a radiopharmaceutical.

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

Methodological Review on Functional Neuroimaging Using Positron Emission Tomography (뇌기능 양전자방출단층촬영영상 분석 기법의 방법론적 고찰)

  • Park, Hae-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.71-77
    • /
    • 2007
  • Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.

MOSAICFUSION: MERGING MODALITIES WITH PARTIAL DIFFERENTIAL EQUATION AND DISCRETE COSINE TRANSFORMATION

  • GARGI TRIVEDI;RAJESH SANGHAVI
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.5_6
    • /
    • pp.389-406
    • /
    • 2023
  • In the pursuit of enhancing image fusion techniques, this research presents a novel approach for fusing multimodal images, specifically infrared (IR) and visible (VIS) images, utilizing a combination of partial differential equations (PDE) and discrete cosine transformation (DCT). The proposed method seeks to leverage the thermal and structural information provided by IR imaging and the fine-grained details offered by VIS imaging create composite images that are superior in quality and informativeness. Through a meticulous fusion process, which involves PDE-guided fusion, DCT component selection, and weighted combination, the methodology aims to strike a balance that optimally preserves essential features and minimizes artifacts. Rigorous evaluations, both objective and subjective, are conducted to validate the effectiveness of the approach. This research contributes to the ongoing advancement of multimodal image fusion, addressing applications in fields like medical imaging, surveillance, and remote sensing, where the marriage of IR and VIS data is of paramount importance.

Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples

  • Park, Joo Hyun;Lee, Eun-Soo;Lee, Jae Yong;Lee, Eun Seong;Lee, Tae Geol;Kim, Se-Hwa;Lee, Sang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.551-557
    • /
    • 2014
  • In this study, we demonstrated multimodal nonlinear optical (NLO) microscopy integrated simultaneously with two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) in order to obtain targeted cellular and label-free images in an immunofluorescence assay of the atherosclerotic aorta from apolipoprotein E-deficient mice. The multimodal NLO microscope used two laser systems: picosecond (ps) and femtosecond (fs) pulsed lasers. A pair of ps-pulsed lights served for CARS (817 nm and 1064 nm) and SHG (817 nm) images; light from the fs-pulsed laser with the center wavelength of 720 nm was incident into the sample to obtain autofluorescence and targeted molecular TPEF images for high efficiency of fluorescence intensity without cross-talk. For multicolor-targeted TPEF imaging, we stained smooth-muscle cells and macrophages with fluorescent dyes (Alexa Fluor 350 and Alexa Fluor 594) for an immunofluorescence assay. Each depth-sectioned image consisted of $512{\times}512$ pixels with a field of view of $250{\times}250{\mu}m^2$, a lateral resolution of $0.4{\mu}m$, and an axial resolution of $1.3{\mu}m$. We obtained composite multicolor images with conventional label-free NLO images and targeted TPEF images in atherosclerotic-plaque samples. Multicolor 3-D imaging of atherosclerotic-plaque structural and functional composition will be helpful for understanding the pathogenesis of cardiovascular disease.

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Hybrid feature extraction of multimodal images for face recognition

  • Cheema, Usman;Moon, Seungbin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.880-881
    • /
    • 2018
  • Recently technological advancements have allowed visible, infrared and thermal imaging systems to be readily available for security and access control. Increasing applications of facial recognition for security and access control leads to emerging spoofing methodologies. To overcome these challenges of occlusion, replay attack and disguise, researches have proposed using multiple imaging modalities. Using infrared and thermal modalities alongside visible imaging helps to overcome the shortcomings of visible imaging. In this paper we review and propose hybrid feature extraction methods to combine data from multiple imaging systems simultaneously.