DOI QR코드

DOI QR Code

Molecular imaging application of iron oxide nanoradiomaterial

  • Ran Ji Yoo (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Ji Yong Park (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Tae Hyeon Choi (Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Jin Sil Kim (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Yun-Sang Lee (Department of Nuclear Medicine, Seoul National University Hospital)
  • Received : 2021.12.07
  • Accepted : 2021.12.28
  • Published : 2021.12.30

Abstract

Various iron oxide nanoparticle-based radiomaterials(IO-NRM) can be used for multimodal imaging of magnetic resonance imaging and molecular imaging, can be easily sized, can be easily functionalized, and have biocompatibility, making them a very good platform for molecular imaging. Based on the previously revealed molecular imaging technology of iron oxide nanoparticles, this paper introduces the in vivo distribution and use in various diseases through iron oxide nanoparticles-based radiolabeled compounds for diagnosis and treatment of iron oxide nanoparticles-based molecular imaging platforms. We would like to look forward to its potential as a radiopharmaceutical.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C2004706 and 2021R1A2C3009427)

References

  1. Ralph Weissleder UM. Molecular Imaging. Radiology 2001;219:316-33. https://doi.org/10.1148/radiology.219.2.r01ma19316
  2. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545-80. https://doi.org/10.1101/gad.1047403
  3. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 2006;5:2624-33. https://doi.org/10.1158/1535-7163.MCT-06-0395
  4. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369-79.
  5. Einat Even-Sapir HL, Genady Lievshitz, Avi Khafif, Dan M. Fliss, Arnon Schwartz, Eyal Gur, Yehuda Skornick, Shlomo Schneebaum. Lymphoscintigraphy for Sentinel Node Mapping Using a Hybrid SPECT/CT System. J Nucl Med 2003;44:1413-20.
  6. Ciprian Catana YW, Martin S. Judenhofer, Jinyi Qi, Bernd J. Pichler, Simon R. Cherry. Simultaneous Acquisition of Multislice PET and MR Images: Initial Results with a MR-Compatible PET Scanner. J Nucl Med 2006;47:1968-76.
  7. Marcel Bruchez Jr. MM, Peter Gin, Shimon Weiss, A. Paul Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels. SCIENCE 1998;281:2013-6. https://doi.org/10.1126/science.281.5385.2013
  8. Warren C. W. Chan SN. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. SCIENCE 1998;281:2016-8. https://doi.org/10.1126/science.281.5385.2016
  9. Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1:180-92. https://doi.org/10.1002/smll.200400118
  10. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 2006;58:1460-70. https://doi.org/10.1016/j.addr.2006.09.015
  11. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ. Metal nanoshells. Ann Biomed Eng 2006;34:15-22. https://doi.org/10.1007/s10439-005-9001-8
  12. Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006;34:23-38. https://doi.org/10.1007/s10439-005-9002-7
  13. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161-71. https://doi.org/10.1038/nrc1566
  14. Piotr Grodzinski MS, Linda K Molnar. Nanotechnology for cancer diagnostics : promises and challenges. Expert Rev Mol Diagn 2006;6:307-18. https://doi.org/10.1586/14737159.6.3.307
  15. Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 2012;41:2575-89. https://doi.org/10.1039/C1CS15248C
  16. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015;115:10637-89. https://doi.org/10.1021/acs.chemrev.5b00112
  17. Yu EY, Bishop M, Zheng B, Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. Nano Lett 2017;17:1648-54. https://doi.org/10.1021/acs.nanolett.6b04865
  18. Ji Yong Park Y-SL, Jae Min Jeong. Preparation of iron oxide nanoparticle combined with radioisotope for molecular imaging. Journal of Radiopharmaceuticals and Molecular Probes 2018;4:36-42. https://doi.org/10.22643/JRMP.2018.4.1.36
  19. Kiani A, Esquevin A, Lepareur N, Bourguet P, Le Jeune F, Gauvrit J. Main applications of hybrid PET-MRI contrast agents: a review. Contrast Media Mol Imaging 2016;11:92-8. https://doi.org/10.1002/cmmi.1674
  20. Ai F, Ferreira CA, Chen F, Cai W. Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:619-30. https://doi.org/10.1002/wnan.1386
  21. Neal K. Devaraj EJK, Greg M. Thurber, Matthias Nahrendorf, Ralph Weissleder. 18F labeled nanoparticles for in Vivo PET-CT imaging. Bioconjugate Chem 2009;20:397-401. https://doi.org/10.1021/bc8004649
  22. Stelter L, Pinkernelle JG, Michel R, Schwartlander R, Raschzok N, Morgul MH, et al. Modification of aminosilanized superparamagnetic nanoparticles: feasibility of multimodal detection using 3T MRI, small animal PET, and fluorescence imaging. Mol Imaging Biol 2010;12:25-34. https://doi.org/10.1007/s11307-009-0237-9
  23. Sharma R, Xu Y, Kim SW, Schueller MJ, Alexoff D, Smith SD, et al. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 2013;5:7476-83. https://doi.org/10.1039/c3nr02519e
  24. Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 2010;21:715-22. https://doi.org/10.1021/bc900511j
  25. Ziyan Sun KC, Fengyu Wu, Hongguang Liu, Xiaowei Ma, Xinhui Su, Yang Liu, Liming Xia, Zhen Cheng. Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET-MR dual-modality imaging. Nanoscale 2016;8:19644-53. https://doi.org/10.1039/C6NR07298D
  26. Torres Martin de Rosales R, Tavare R, Glaria A, Varma G, Protti A, Blower PJ. 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 2011;22:455-65. https://doi.org/10.1021/bc100483k
  27. Lee CM, Jeong HJ, Kim EM, Kim DW, Lim ST, Kim HT, et al. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med 2009;62:1440-6. https://doi.org/10.1002/mrm.22123
  28. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002;2:683-93. https://doi.org/10.1038/nrc882
  29. Aryal S, Key J, Stigliano C, Landis MD, Lee DY, Decuzzi P. Positron emitting magnetic nanoconstructs for PET/MR imaging. Small 2014;10:2688-96. https://doi.org/10.1002/smll.201303933
  30. Teng Liu SS, Chao Liang, Sida Shen, Liang Cheng, Chao Wang, Xuejiao Song, Shreya Goel, Todd E. Barnhart, Weibo Cai, Zhuang Liu. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015;27:950-60.
  31. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008;49:1371-9. https://doi.org/10.2967/jnumed.108.051243
  32. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011;32:4151-60. https://doi.org/10.1016/j.biomaterials.2011.02.006
  33. Deng S, Zhang W, Zhang B, Hong R, Chen Q, Dong J, et al. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. Journal of Nanoparticle Research 2015;17.
  34. Pellico J, Ruiz-Cabello J, Saiz-Alia M, Del Rosario G, Caja S, Montoya M, et al. Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging 2016;11:203-10. https://doi.org/10.1002/cmmi.1681
  35. Kim SM, Chae MK, Yim MS, Jeong IH, Cho J, Lee C, et al. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials 2013;34:8114-21. https://doi.org/10.1016/j.biomaterials.2013.07.078
  36. Moon SH, Yang BY, Kim YJ, Hong MK, Lee YS, Lee DS, et al. Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomedicine 2016;12:871-9. https://doi.org/10.1016/j.nano.2015.12.368
  37. Ralph Weissleder PFH, David D. Stark. Sanjay Jack, Guillermo Elizondo, Sanjay Saini, Luis E. Todd, Jack Wittenberg, Joseph T. Ferrucci. Superparamagnetic iron oxide-Enhanced detection of focal splenic tumors with MR imaging. Radiology. 1988;169:399-403. https://doi.org/10.1148/radiology.169.2.3174987
  38. Peter Reimer NJh, Martin Fiebich, Wolfgang Schima, Filip Deckers, Christian Marx, Nicolaus Holzknecht, Sanjay Saini,. Hepatic lesion detection and characterization_Value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 2000;217:152-8. https://doi.org/10.1148/radiology.217.1.r00oc31152
  39. Peter Reimer RW, Albert S. Lee, Jack Wittenberg, Thomas J. Brady. Receptor imaging_Application to MR imaging of liver cancer. Radiology 1990;177:729-34. https://doi.org/10.1148/radiology.177.3.2243978
  40. Dai X, Qian W, Yang H, Yang L, Jiang H. Targeted Molecular Imaging of Pancreatic Cancer with a Miniature Endoscope. Appl Sci (Basel) 2017;7.
  41. Torres Martin de Rosales R, Tavare R, Paul RL, Jauregui-Osoro M, Protti A, Glaria A, et al. Synthesis of 64Cu(II)-bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET-MRI agent. Angew Chem Int Ed Engl 2011;50:5509-13. https://doi.org/10.1002/anie.201007894
  42. Renata Madru TAT, Johan Axelsson, Christian Ingvar, Adnan Bibic, Freddy Stahlberg, Knutsson, Sven-Erik Strand. 68Ga-Labeled Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Multi-Modality PET-MR-Cherenkov Luminescence Imaging of Sentinel Lymph Nodes. Am J Nucl Med Mol Imaging 2014;4:60-9.
  43. Evertsson M, Kjellman P, Cinthio M, Andersson R, Tran TA, In't Zandt R, et al. Combined Magnetomotive ultrasound, PET/CT, and MR imaging of (68)Ga-labelled superparamagnetic iron oxide nanoparticles in rat sentinel lymph nodes in vivo. Sci Rep 2017;7:4824.
  44. Yang BY MS, Seelam SR, Jeon MJ, Lee YS, Lee DS, Chung JK, Kim YI, Jeong JM. . Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine (Lond) 2015;10:1899-910. https://doi.org/10.2217/nnm.15.41
  45. Jun Sung Kim Y-HK, Jin Hyun Kim, Keon Wook Kang, Eunju Lee Tae, Hyewon Youn, Daehong Kim, Seok-Ki Kim, Jung-Taek Kwon, , Myung-Haing Cho Y-SL, Jae Min Jeong, June-Key Chung, Dong Soo Lee. Development and in vivo imaging of a PET-MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine 2012;7:219-29. https://doi.org/10.2217/nnm.11.94
  46. Choi JS, Park JC, Nah H, Woo S, Oh J, Kim KM, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl 2008;47:6259-62. https://doi.org/10.1002/anie.200801369
  47. Park JC, Yu MK, An GI, Park SI, Oh J, Kim HJ, et al. Facile preparation of a hybrid nanoprobe for triple-modality optical/PET/MR imaging. Small 2010;6:2863-8. https://doi.org/10.1002/smll.201001418
  48. Thorek DL, Ulmert D, Diop NF, Lupu ME, Doran MG, Huang R, et al. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun 2014;5:3097.
  49. Xianjin Cui DM, Noemi Kovacs, Ildiko Horvath, Maite Jauregui-Osoro, Rafael T. M. de Rosales, Gregory E. D. Mullen, Wilson Wong, Yong Yan, Dirk Kruger, Andrei N. Khlobystov, Maria Gimenez-Lopez, Mariann Semjeni, Krisztian Szigeti, Daniel S Veres, Haizhou Lu, Ignacio Hernandez, William P. Gillin,g Andrea Protti, Katalin Kis Petik, Mark A. Green, Philip J. Blower Synthesis, Characterization, and Application of Core-ShellCo0.16Fe2.84O4@NaYF4(Yb,Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI,PETSPECT, and Optical) Imaging Agents. Bioconjug Chem 2016;17:319-28.
  50. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, et al. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater 2014;26:5119-23. https://doi.org/10.1002/adma.201401372
  51. Madru R, Kjellman P, Olsson F, Wingardh K, Ingvar C, Stahlberg F, et al. 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. J Nucl Med 2012;53:459-63. https://doi.org/10.2967/jnumed.111.092437
  52. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018;137:e67-e492.
  53. Nahrendorf M, Keliher E, Marinelli B, Leuschner F, Robbins CS, Gerszten RE, et al. Detection of macrophages in aortic aneurysms by nanoparticle positron emission tomography-computed tomography. Arterioscler Thromb Vasc Biol 2011;31:750-7. https://doi.org/10.1161/ATVBAHA.110.221499
  54. Ueno T, Dutta P, Keliher E, Leuschner F, Majmudar M, Marinelli B, et al. Nanoparticle PET-CT detects rejection and immunomodulation in cardiac allografts. Circ Cardiovasc Imaging 2013;6:568-73. https://doi.org/10.1161/CIRCIMAGING.113.000481
  55. Jarrett BR, Correa C, Ma KL, Louie AY. In vivo mapping of vascular inflammation using multimodal imaging. PLoS One 2010;5:e13254.
  56. Tu C, Ng TS, Jacobs RE, Louie AY. Multimodality PET/MRI agents targeted to activated macrophages. J Biol Inorg Chem 2014;19:247-58. https://doi.org/10.1007/s00775-013-1054-9
  57. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008;117:379-87. https://doi.org/10.1161/CIRCULATIONAHA.107.741181
  58. Marciello M, Pellico J, Fernandez-Barahona I, Herranz F, Ruiz-Cabello J, Filice M. Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus 2016;6:20160055.