DOI QR코드

DOI QR Code

Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples

  • Park, Joo Hyun (Department of Nano and Bio Surface Science, Korea University of Science and Technology) ;
  • Lee, Eun-Soo (Center for Nanosafety Metrology, Korea Research Institute of Standards and Science) ;
  • Lee, Jae Yong (Department of Nano and Bio Surface Science, Korea University of Science and Technology) ;
  • Lee, Eun Seong (Center for Nanometrology, Korea Research Institute of Standards and Science) ;
  • Lee, Tae Geol (Department of Nano and Bio Surface Science, Korea University of Science and Technology) ;
  • Kim, Se-Hwa (Department of Nano and Bio Surface Science, Korea University of Science and Technology) ;
  • Lee, Sang-Won (Department of Nano and Bio Surface Science, Korea University of Science and Technology)
  • Received : 2014.07.02
  • Accepted : 2014.09.23
  • Published : 2014.10.25

Abstract

In this study, we demonstrated multimodal nonlinear optical (NLO) microscopy integrated simultaneously with two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) in order to obtain targeted cellular and label-free images in an immunofluorescence assay of the atherosclerotic aorta from apolipoprotein E-deficient mice. The multimodal NLO microscope used two laser systems: picosecond (ps) and femtosecond (fs) pulsed lasers. A pair of ps-pulsed lights served for CARS (817 nm and 1064 nm) and SHG (817 nm) images; light from the fs-pulsed laser with the center wavelength of 720 nm was incident into the sample to obtain autofluorescence and targeted molecular TPEF images for high efficiency of fluorescence intensity without cross-talk. For multicolor-targeted TPEF imaging, we stained smooth-muscle cells and macrophages with fluorescent dyes (Alexa Fluor 350 and Alexa Fluor 594) for an immunofluorescence assay. Each depth-sectioned image consisted of $512{\times}512$ pixels with a field of view of $250{\times}250{\mu}m^2$, a lateral resolution of $0.4{\mu}m$, and an axial resolution of $1.3{\mu}m$. We obtained composite multicolor images with conventional label-free NLO images and targeted TPEF images in atherosclerotic-plaque samples. Multicolor 3-D imaging of atherosclerotic-plaque structural and functional composition will be helpful for understanding the pathogenesis of cardiovascular disease.

Keywords

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). https://doi.org/10.1126/science.2321027
  2. C. Buehler, K. H. Kim, C. Y. Dong, B. R. Masters, and P. T. So, "Innovations in two-photon deep tissue microscopy," IEEE Eng. Med. Biol. Mag. 18, 23-30 (1999). https://doi.org/10.1109/51.790988
  3. I. Freund, M. Deutsch, and A. Sprecher, "Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693-712 (1986). https://doi.org/10.1016/S0006-3495(86)83510-X
  4. P. Campagnola, "Second harmonic generation imaging microscopy: Applications to diseases diagnostics," Anal. Chem. 83, 3224-3231 (2011). https://doi.org/10.1021/ac1032325
  5. R. F. Begley, A. B. Harvey, and R. L. Byer, "Coherent antiStokes Raman spectroscopy," Appl. Phys. Lett. 25, 387-390 (1974). https://doi.org/10.1063/1.1655519
  6. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350-352 (1982). https://doi.org/10.1364/OL.7.000350
  7. T. B. Huff, Y. Shi, Y. Fu, H. Wang, and J. X. Cheng, "Multimodal nonlinear optical microscopy and applications to central nervous system imaging," IEEE J. Select. Topics Quantum Electron. 14, 4-9 (2008). https://doi.org/10.1109/JSTQE.2007.913419
  8. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, "A multimodal platform for nonlinear optical microscopy and microspectroscopy," Opt. Express 17, 1282-1290 (2009). https://doi.org/10.1364/OE.17.001282
  9. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Legare, "Multimodal nonlinear optical imaging of collagen arrays," J. Struct. Biol. 164, 140-145 (2008). https://doi.org/10.1016/j.jsb.2008.07.002
  10. C. H. Chien, W. W. Chen, J. T. Wu, and T. C. Chang, "Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy," J. Biomed. Opt. 16, 016012 (2011). https://doi.org/10.1117/1.3528642
  11. J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, "Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique," J. Biomed. Opt. 16, 116024 (2011). https://doi.org/10.1117/1.3655353
  12. E. Belanger, J. Crepeau, S. Laffray, R. Vallee, Y. De Koninck, and D. Cote, "Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy," J. Biomed. Opt. 17, 021107 (2012). https://doi.org/10.1117/1.JBO.17.2.021107
  13. R. M. Hoffman, "Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging," J. Biomed. Opt. 10, 41202 (2005). https://doi.org/10.1117/1.1992485
  14. H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, "Two-photon dual-color imaging using fluorescent proteins," Nat. Methods 5, 373-374 (2008). https://doi.org/10.1038/nmeth0508-373
  15. S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, "A new approach to dual-color two-photon microscopy with fluorescent proteins," BMC Biotechnol. 10, 6 (2010). https://doi.org/10.1186/1472-6750-10-6
  16. P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Debarre, and E. Beaurepaire, "Multicolor two-photon tissue imaging by wavelength mixing," Nat. Methods 9, 815-818 (2012). https://doi.org/10.1038/nmeth.2098
  17. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, "Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy," J. Biomed. Opt. 11, 020501 (2006). https://doi.org/10.1117/1.2177676
  18. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007). https://doi.org/10.1117/1.2795437
  19. H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009). https://doi.org/10.1161/ATVBAHA.109.189316
  20. A. C. Ko, A. Ridsdale, M. S. Smith, L. B. Mostaco-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, "Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits," J. Biomed. Opt. 15, 020501 (2010). https://doi.org/10.1117/1.3353960
  21. L. B. Mostaco-Guidolin, M. G. Sowa, A. Ridsdale, A. F. Pegoraro, M. S. Smith, M. D. Hewko, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and A. C. Ko, "Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging," Biomed. Opt. Express 1, 59-73 (2010). https://doi.org/10.1364/BOE.1.000059
  22. J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, "Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy," Biophys. J. 102, 1988-1995 (2012). https://doi.org/10.1016/j.bpj.2012.03.016
  23. P. Libby, "Molecular bases of the acute coronary syndromes," Circulation 91, 2844-2850 (1995). https://doi.org/10.1161/01.CIR.91.11.2844
  24. C. M. Dollery, J. R. McEwan, and A. M. Henney, "Matrix metalloproteinases and cardiovascular disease," Circ. Res. 77, 863-868 (1995). https://doi.org/10.1161/01.RES.77.5.863
  25. J. L. Mehta, T. G. Saldeen, and K. Rand, "Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease," J. Am. Coll. Cardiol. 31, 1217-1225 (1998). https://doi.org/10.1016/S0735-1097(98)00093-X
  26. M. J. Davies, P. D. Richardson, N. Woolf, D. R. Katz, and J. Mann, "Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content," Br. Heart J. 69, 377-381 (1993). https://doi.org/10.1136/hrt.69.5.377
  27. G. Stoll and M. Bendszus, "Inflammation and atherosclerosis: Novel insights into plaque formation and destabilization," Stroke 37, 1923-1932 (2006). https://doi.org/10.1161/01.STR.0000226901.34927.10
  28. M. M. Kockx, G. R. De Meyer, J. Muhring, W. Jacob, H. Bult, and A. G. Herman, "Apoptosis and related proteins in different stages of human atherosclerotic plaques," Circulation 97, 2307-2315 (1998). https://doi.org/10.1161/01.CIR.97.23.2307
  29. D. J. Taatjes, M. P. Wadsworth, A. S. Quinn, J. H. Rand, E. G. Bovill, and B. E. Sobel, "Imaging aspects of cardiovascular disease at the cell and molecular level," Histochem. Cell Biol. 130, 235-245 (2008). https://doi.org/10.1007/s00418-008-0444-5
  30. H. Azumi, K. Hirata, T. Ishida, Y. Kojima, Y. Rikitake, S. Takeuchi, N. Inoue, S. Kawashima, Y. Hayashi, H. Itoh, T. Quertermous, and M. Yokoyama, "Immunohistochemical localization of endothelial cell-derived lipase in atherosclerotic human coronary arteries," Cardiovasc. Res. 58, 647-654 (2003). https://doi.org/10.1016/S0008-6363(03)00287-6
  31. D. J. Schneider, M. Hayes, M. Wadsworth, H. Taatjes, M. Rincon, D. J. Taatjes, and B. E. Sobel, "Attenuation of neointimal vascular smooth muscle cellularity in atheroma by plasminogen activator inhibitor type 1 (PAI-1)," J. Histochem. Cytochem. 52, 1091-1099 (2004). https://doi.org/10.1369/jhc.4A6260.2004
  32. S.-H. Kim, E.-S. Lee, J. Lee, E. Lee, B.-S. Lee, J. Park, and D. Moon, "Multiplex coherent anti-Stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids," Circ. Res. 106, 1332-1341 (2010). https://doi.org/10.1161/CIRCRESAHA.109.208678
  33. W. Zipfel, "Two-photon excitation cross sections," http://www.drbio.cornell.edu/cross_sections.html.
  34. O. de Barco and J. M. Bueno, "Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength," J. Biomed. Opt. 17, 045005 (2012). https://doi.org/10.1117/1.JBO.17.4.045005
  35. J. X. Rong, M. Shapiro, E. Trogan, and E. A. Fisher, "Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading," Proc. Natl. Acad. Sci. USA 100, 13531-13536 (2003). https://doi.org/10.1073/pnas.1735526100
  36. P. Libby, P. M. Ridker, and A. Maseri, "Inflammation and atherosclerosis," Circulation 105, 1135-1143 (2002). https://doi.org/10.1161/hc0902.104353
  37. K. Jagavelu, U. J. Tietge, M. Gaestel, H. Drexler, B. Schieffer, and U. Bavendiek, "Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice," Circ. Res. 101, 1104-1112 (2007). https://doi.org/10.1161/CIRCRESAHA.107.156075
  38. K. A. Campbell, M. J. Lipinski, A. C. Doran, M. D. Skaflen, V. Fuster, and C. A. McNamara, "Lymphocytes and the adventitial immune response in atherosclerosis," Circ. Res. 110, 889-900 (2012). https://doi.org/10.1161/CIRCRESAHA.111.263186
  39. A. M. Kampoli, D. Tousoulis, C. Antoniades, G. Siasos, and C. Stefanadis, "Biomarkers of premature atherosclerosis," Trends Mol. Med. 15, 323-332 (2009). https://doi.org/10.1016/j.molmed.2009.06.001