Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.5.551

Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples  

Park, Joo Hyun (Department of Nano and Bio Surface Science, Korea University of Science and Technology)
Lee, Eun-Soo (Center for Nanosafety Metrology, Korea Research Institute of Standards and Science)
Lee, Jae Yong (Department of Nano and Bio Surface Science, Korea University of Science and Technology)
Lee, Eun Seong (Center for Nanometrology, Korea Research Institute of Standards and Science)
Lee, Tae Geol (Department of Nano and Bio Surface Science, Korea University of Science and Technology)
Kim, Se-Hwa (Department of Nano and Bio Surface Science, Korea University of Science and Technology)
Lee, Sang-Won (Department of Nano and Bio Surface Science, Korea University of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.18, no.5, 2014 , pp. 551-557 More about this Journal
Abstract
In this study, we demonstrated multimodal nonlinear optical (NLO) microscopy integrated simultaneously with two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) in order to obtain targeted cellular and label-free images in an immunofluorescence assay of the atherosclerotic aorta from apolipoprotein E-deficient mice. The multimodal NLO microscope used two laser systems: picosecond (ps) and femtosecond (fs) pulsed lasers. A pair of ps-pulsed lights served for CARS (817 nm and 1064 nm) and SHG (817 nm) images; light from the fs-pulsed laser with the center wavelength of 720 nm was incident into the sample to obtain autofluorescence and targeted molecular TPEF images for high efficiency of fluorescence intensity without cross-talk. For multicolor-targeted TPEF imaging, we stained smooth-muscle cells and macrophages with fluorescent dyes (Alexa Fluor 350 and Alexa Fluor 594) for an immunofluorescence assay. Each depth-sectioned image consisted of $512{\times}512$ pixels with a field of view of $250{\times}250{\mu}m^2$, a lateral resolution of $0.4{\mu}m$, and an axial resolution of $1.3{\mu}m$. We obtained composite multicolor images with conventional label-free NLO images and targeted TPEF images in atherosclerotic-plaque samples. Multicolor 3-D imaging of atherosclerotic-plaque structural and functional composition will be helpful for understanding the pathogenesis of cardiovascular disease.
Keywords
Nonlinear optical microscopy; Multimodal; Immunofluorescence assay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Campagnola, "Second harmonic generation imaging microscopy: Applications to diseases diagnostics," Anal. Chem. 83, 3224-3231 (2011).   DOI   ScienceOn
2 W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).   DOI
3 C. Buehler, K. H. Kim, C. Y. Dong, B. R. Masters, and P. T. So, "Innovations in two-photon deep tissue microscopy," IEEE Eng. Med. Biol. Mag. 18, 23-30 (1999).   DOI   ScienceOn
4 I. Freund, M. Deutsch, and A. Sprecher, "Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon," Biophys. J. 50, 693-712 (1986).   DOI   ScienceOn
5 R. F. Begley, A. B. Harvey, and R. L. Byer, "Coherent antiStokes Raman spectroscopy," Appl. Phys. Lett. 25, 387-390 (1974).   DOI
6 M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett. 7, 350-352 (1982).   DOI
7 T. B. Huff, Y. Shi, Y. Fu, H. Wang, and J. X. Cheng, "Multimodal nonlinear optical microscopy and applications to central nervous system imaging," IEEE J. Select. Topics Quantum Electron. 14, 4-9 (2008).   DOI   ScienceOn
8 H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, "A multimodal platform for nonlinear optical microscopy and microspectroscopy," Opt. Express 17, 1282-1290 (2009).   DOI
9 C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Legare, "Multimodal nonlinear optical imaging of collagen arrays," J. Struct. Biol. 164, 140-145 (2008).   DOI   ScienceOn
10 C. H. Chien, W. W. Chen, J. T. Wu, and T. C. Chang, "Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy," J. Biomed. Opt. 16, 016012 (2011).   DOI   ScienceOn
11 H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, "Two-photon dual-color imaging using fluorescent proteins," Nat. Methods 5, 373-374 (2008).   DOI   ScienceOn
12 J. Lin, F. Lu, W. Zheng, S. Xu, D. Tai, H. Yu, and Z. Huang, "Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique," J. Biomed. Opt. 16, 116024 (2011).   DOI   ScienceOn
13 E. Belanger, J. Crepeau, S. Laffray, R. Vallee, Y. De Koninck, and D. Cote, "Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy," J. Biomed. Opt. 17, 021107 (2012).   DOI   ScienceOn
14 R. M. Hoffman, "Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging," J. Biomed. Opt. 10, 41202 (2005).   DOI   ScienceOn
15 S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, "A new approach to dual-color two-photon microscopy with fluorescent proteins," BMC Biotechnol. 10, 6 (2010).   DOI   ScienceOn
16 H. W. Wang, I. M. Langohr, M. Sturek, and J. X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009).   DOI   ScienceOn
17 P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Debarre, and E. Beaurepaire, "Multicolor two-photon tissue imaging by wavelength mixing," Nat. Methods 9, 815-818 (2012).   DOI   ScienceOn
18 S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, "Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy," J. Biomed. Opt. 11, 020501 (2006).   DOI   ScienceOn
19 T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J. X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007).   DOI   ScienceOn
20 P. Libby, "Molecular bases of the acute coronary syndromes," Circulation 91, 2844-2850 (1995).   DOI   ScienceOn
21 A. C. Ko, A. Ridsdale, M. S. Smith, L. B. Mostaco-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, "Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits," J. Biomed. Opt. 15, 020501 (2010).   DOI   ScienceOn
22 L. B. Mostaco-Guidolin, M. G. Sowa, A. Ridsdale, A. F. Pegoraro, M. S. Smith, M. D. Hewko, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and A. C. Ko, "Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging," Biomed. Opt. Express 1, 59-73 (2010).   DOI   ScienceOn
23 M. J. Davies, P. D. Richardson, N. Woolf, D. R. Katz, and J. Mann, "Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content," Br. Heart J. 69, 377-381 (1993).   DOI   ScienceOn
24 J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, "Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy," Biophys. J. 102, 1988-1995 (2012).   DOI   ScienceOn
25 C. M. Dollery, J. R. McEwan, and A. M. Henney, "Matrix metalloproteinases and cardiovascular disease," Circ. Res. 77, 863-868 (1995).   DOI   ScienceOn
26 J. L. Mehta, T. G. Saldeen, and K. Rand, "Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease," J. Am. Coll. Cardiol. 31, 1217-1225 (1998).   DOI   ScienceOn
27 G. Stoll and M. Bendszus, "Inflammation and atherosclerosis: Novel insights into plaque formation and destabilization," Stroke 37, 1923-1932 (2006).   DOI   ScienceOn
28 D. J. Schneider, M. Hayes, M. Wadsworth, H. Taatjes, M. Rincon, D. J. Taatjes, and B. E. Sobel, "Attenuation of neointimal vascular smooth muscle cellularity in atheroma by plasminogen activator inhibitor type 1 (PAI-1)," J. Histochem. Cytochem. 52, 1091-1099 (2004).   DOI   ScienceOn
29 M. M. Kockx, G. R. De Meyer, J. Muhring, W. Jacob, H. Bult, and A. G. Herman, "Apoptosis and related proteins in different stages of human atherosclerotic plaques," Circulation 97, 2307-2315 (1998).   DOI   ScienceOn
30 D. J. Taatjes, M. P. Wadsworth, A. S. Quinn, J. H. Rand, E. G. Bovill, and B. E. Sobel, "Imaging aspects of cardiovascular disease at the cell and molecular level," Histochem. Cell Biol. 130, 235-245 (2008).   DOI
31 H. Azumi, K. Hirata, T. Ishida, Y. Kojima, Y. Rikitake, S. Takeuchi, N. Inoue, S. Kawashima, Y. Hayashi, H. Itoh, T. Quertermous, and M. Yokoyama, "Immunohistochemical localization of endothelial cell-derived lipase in atherosclerotic human coronary arteries," Cardiovasc. Res. 58, 647-654 (2003).   DOI   ScienceOn
32 S.-H. Kim, E.-S. Lee, J. Lee, E. Lee, B.-S. Lee, J. Park, and D. Moon, "Multiplex coherent anti-Stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids," Circ. Res. 106, 1332-1341 (2010).   DOI   ScienceOn
33 W. Zipfel, "Two-photon excitation cross sections," http://www.drbio.cornell.edu/cross_sections.html.
34 O. de Barco and J. M. Bueno, "Second harmonic generation signal in collagen fibers: role of polarization, numerical aperture, and wavelength," J. Biomed. Opt. 17, 045005 (2012).   DOI   ScienceOn
35 J. X. Rong, M. Shapiro, E. Trogan, and E. A. Fisher, "Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading," Proc. Natl. Acad. Sci. USA 100, 13531-13536 (2003).   DOI   ScienceOn
36 P. Libby, P. M. Ridker, and A. Maseri, "Inflammation and atherosclerosis," Circulation 105, 1135-1143 (2002).   DOI   ScienceOn
37 K. Jagavelu, U. J. Tietge, M. Gaestel, H. Drexler, B. Schieffer, and U. Bavendiek, "Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice," Circ. Res. 101, 1104-1112 (2007).   DOI   ScienceOn
38 K. A. Campbell, M. J. Lipinski, A. C. Doran, M. D. Skaflen, V. Fuster, and C. A. McNamara, "Lymphocytes and the adventitial immune response in atherosclerosis," Circ. Res. 110, 889-900 (2012).   DOI   ScienceOn
39 A. M. Kampoli, D. Tousoulis, C. Antoniades, G. Siasos, and C. Stefanadis, "Biomarkers of premature atherosclerosis," Trends Mol. Med. 15, 323-332 (2009).   DOI   ScienceOn