• Title/Summary/Keyword: multidrug-resistant strains

Search Result 113, Processing Time 0.032 seconds

Antibacterial and Synergistic Activity of Isocryptomerin Isolated from Selaginella tamariscina

  • Lee, June-Young;Choi, Yun-Jung;Woo, Eun-Rhan;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.204-207
    • /
    • 2009
  • We investigated novel antibacterial and synergistic activities of isocryptomerin isolated from Selaginella tamariscina. Isocryptomerin showed potent antibacterial activity against Gram-positive and Gram-negative bacterial strains including clinical isolates of antibiotic-resistant species such as methicillin-resistant Staphylococcus aureus(MRSA). Additionally, we further investigated the synergistic activity of isocryptomerin with a conventional antibiotic against MRSA. The result indicated that isocryptomerin had considerable synergistic activity in combination with cefotaxime. In summary, the present study suggests that isocryptomerin may have potential as a novel therapeutic agent for treatment of infectious diseases by not only human pathogenic bacteria but also multidrug-resistant bacteria.

Monitoring antimalarial drug-resistance markers in Somalia

  • Abdifatah Abdullahi Jalei;Kesara Na-Bangchang;Phunuch Muhamad;Wanna Chaijaroenkul
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.78-83
    • /
    • 2023
  • The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.

Prevalence and Characteristics of Antimicrobial-Resistant Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus from Retail Meat in Korea

  • Kim, Yong Hoon;Kim, Han Sol;Kim, Seokhwan;Kim, Migyeong;Kwak, Hyo Sun
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.758-771
    • /
    • 2020
  • This study was to investigate the prevalence and characteristics of antimicrobial-resistant Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from 4,264 retail meat samples including beef, pork, and chicken in Korea between 2013 and 2018. A broth microdilution antimicrobial susceptibility testing was performed for S. aureus. Molecular typing by multilocus sequence typing (MLST), spa typing, and pulsed-field gel electrophoresis (PFGE), was performed on mecA-positive S. aureus strain. S. aureus was isolated at a rate of 18.2% (777/4,264), of which MRSA comprised 0.7% (29 strains). MLST analysis showed that 11 out of the 29 MRSA isolates were predominantly sequence type (ST) 398 (37.9%). In addition, ST72, ST692, ST188, ST9, and ST630 were identified in the MRSA isolates. The spa typing results were classified into 11 types and showed a high correlation with MLST. The antimicrobial resistance assays revealed that MRSA showed 100% resistance to cefoxitin and penicillin. In addition, resistance to tetracycline (62.1%), clindamycin (55.2%), and erythromycin (55.2%) was relatively high; 27 of the 29 MRSA isolates exhibited multidrug resistance. PFGE analysis of the 18 strains excluding the 11 ST398 strains exhibited a maximum of 100% homology and a minimum of 64.0% homology. Among these, three pairs of isolates showed 100% homology in PFGE; these results were consistent with the MLST and spa typing results. Identification of MRSA at the final consumption stage has potential risks, suggesting that continuous monitoring of retail meat products is required.

Isolation and Characterization of Halophilic Kocuria salsicia Strains from Cheese Brine

  • Youn, Hye-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.252-265
    • /
    • 2022
  • Kocuria salsicia can survive in extreme environments and cause infections, including catheter-related bacteremia, in humans. Here, we investigated and evaluated the characteristics of nine K. salsicia strains (KS1-KS9) isolated from cheese brine from a farmstead cheese-manufacturing plant in Korea from June to December, 2020. Staphylococcus aureus American Type Culture Collection (ATCC) 29213 was used as a positive control in the growth curve analysis and biofilm-formation assays. All K. salsicia isolates showed growth at 15% salt concentration and temperatures of 15℃, 25℃, 30℃, 37℃, and 42℃. KS6 and KS8 showed growth at 5℃, suggesting that they are potential psychrotrophs. In the biofilm-formation analysis via crystal violet staining, KS6 exhibited the highest biofilm-forming ability at various temperatures and media [phosphate buffered saline, nutrient broth (NB), and NB containing 15% sodium chloride]. At 25℃ and 30℃, KS3, KS6, and KS8 showed higher biofilm-forming ability than S. aureus ATCC 29213. The antimicrobial resistance of the isolates was evaluated using the VITEK® 2 system; most isolates were resistant to marbofloxacin and nitrofurantoin (both 9/9, 100%), followed by enrofloxacin (7/9, 77.8%). Five of the nine isolates (5/9, 55.6%) showed multidrug resistance. Our study reports the abilities of K. salsicia to grow in the presence of high salt concentrations and at relatively low temperatures, along with its multidrug resistance and tendency to form biofilms.

Emergence of CTX-M-15 Extended Spectrum β-lactamase and ArmA-Producing Enterobacter cloacae (CTX-M-15형 Extended Spectrum β-lactamase와 ArmA 동시 생성 Enterobacter cloacae의 출현)

  • Sung, Ji-Youn
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.313-318
    • /
    • 2015
  • We investigated the prevalence of extended spectrum ${\beta}$-lactamase (ESBL) genes and 16S rRNA methyltransferase genes to study antimicrobial resistance mechanisms of Enterobacter cloacae strains isolated from a university hospital in the Chungcheong province of Korea. Eight of the bacteria strains involved in this study contained CTX-M-15 type ESBL. Among 8 strains harboring the ESBL gene, 3 strains also harbored armA gene. The three isolates showed resistance to antimicrobial agents belonged to third cephalosporin, aminoglycoside, and fluoroquinolones. Furthermore, interspecies plasmid transfer of the antimicrobial resistant genes may induced horizontal spreading of the genes and emergence of multidrug resistant bacteria. Therefore, surveillance for existence of antimicrobial resistance determinants is important to prevent distribution of antimicrobial resistant strains.

Antimicrobial Resistance and Virulence Genes Presence in Escherichia coli Strains Isolated from Gomso Bay, Korea

  • Park, Kwon-Sam
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • In total, 131 Escherichia coli isolates from surface seawater of the Gomso Bay, of Korea, were analyzed for their susceptibility to 22 different antimicrobials and for genes associated with antimicrobial resistance and virulence. According to the disk diffusion susceptibility test, the resistance to tetracycline was most prevalent (33.6%), followed by that to ampicillin (22.1%), ticarcillin (22.1%), and trimethoprim (16.8%). More than 46.6% of the isolates were resistant to at least one antimicrobial, and 22.9% were resistant to three or more classes of antimicrobials; these were consequently defined as multidrug resistant. We further found that 29 ampicillin-resistant isolates possessed genes encoding TEM-type (93.1%) and SHV-type (6.9%) ${\beta}$-lactamases. Among the 44 tetracycline-resistant isolates, tetA and tetC were found in 35 (79.5%) and 19 (43.2%), respectively, whereas tetB was detected in only three isolates (6.8%). With regard to virulence genes, merely 0.8% (n = 1) and 2.3% (n = 3) of the isolates were positive for the enteroaggregative E. coli-associated plasmid (pCVD432) gene and the enteropathogenic E. coli-specific attaching and effacing (eae) gene, respectively. Overall, these results not only provide novel insight into the necessity for seawater sanitation in Gomso Bay, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

Molecular Typing of Salmonella enterica serovar Typhi Strains Isolated in Busan by Pulsed-Field Gel Electrophoresis (부산지역에서 분리된 Salmonella enterica serovar Typhi균에 대한 PFGE를 이용한 Molecular typing)

  • Min, Sang-Kee;Lee, Ju-Hyun;Park, Eun-Hee;Kim, Jung-Ah;Kim, Kyu-Won
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.664-671
    • /
    • 2006
  • We obtained 424 Salmonella enterica serovar Typhi isolates from sporadic cases of infection in Busan during 1996 to 2005. We investigated the trend of antimicrobial resistance and molecular typing by pulsed-field gel electrophoresis (PFGE). Of the total 424 isolates, 6 strains (1.4%) were multidrug-resistant (MDR) S. enterica serovar Typhi isolates, 2 strains (0.5%) were resistant to only nalidixic acid, and the remaining 416 strains (98.1%) were fully susceptible to the 18 antimicrobial agent. PFGE of XbaI-digested chromosomal DNA was performed on 50 sporadic S. enterica serovar Typhi isolates with the objective of investigating the extent of genetic diversity of these isolates in our region. We could find that these isolates were much more heterogeneous and at least 32 different PFGE patterns were generated according by dice coefficient, between 0.69 and 1.0. Restriction fragment patterns consisted of 13 to 18 fragments ranged in size from 20 to 630 kb. The results confirmed that PFGE would be an useful tool for investigating surveillance of sporadic or outbreak case and assessing clonality for S. enterica serovar Typhi in Busan area. Our finding will be valuable in developing rational strategies to control this pathogen and setting the basis of an effective PulseNet system in Korea.

Synergistic Effect of Brazilein in Combination with Hygromycin-b against Staphylococcus aureus (메티실린-내성 포도상구균에 대하여 Brazilein 혼합에 따른 항생제 Hygromycin-b의 상승효과)

  • Lee, Young Seob;Lee, Dae Young;An, Tae Jin;Lee, Jeong Hoon;Ahn, Young Sup;Cha, Seon Woo;Mun, Su Hyun;Kang, Ok Hwa;Kwon, Dong Yeul;Han, Sin Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.504-509
    • /
    • 2014
  • Methicillin-resistant Staphylococcus aureus (MRSA) is a substantial contributor to morbidity and mortality. In search of a natural products capable of inhibiting this multidrug resistant bacteria, we have investigated the antimicrobial activity of brazilein (BRZ) isolated from Caesalpinia sappan L. (Leguminosae) against 8 different strains of Staphylococcus aureus (S. aureus). New antimicrobial activity was found using the minimum inhibitory concentrations (MICs), broth dilution as well as checkerboard method. Against the 8 strains, the minimum inhibitory concentrations of BRZ were in the range of $62.5-500{\mu}g/mL$. From those results we performed the checkerboard test to determine the synergism of BRZ in combination with Hygromycin-b (HgB) against 4 strains. The combined activity of BRZ and HgB against 4 strains resulted in a fractional inhibitory concentrations index (FICI) ranging from 0.18-0.5. The effect of BRZ with HgB was found to be synergistic. We found that BRZ reduced the MICs of HgB. BRZ and HgB could lead to the development of new combination antibiotics against MRSA infection.

Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment

  • Back, Seung Hyun;Eom, Hong Sik;Lee, Haeng Ho;Lee, Gi Yong;Park, Kun Taek;Yang, Soo-Jin
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2020
  • The emergence of livestock-associated (LA)-methicillin-resistant Staphylococcus aureus (MRSA) in livestock animal has become a significant zoonotic concern. In the present study, we investigated nationwide prevalence of LA-MRSA across pork production chain including pig farms, slaughterhouses, and retail markets. A total of 40 MRSA strains were isolated during the investigation and the overall prevalence of MRSA was 3.4% (n = 37), 0.6% (n = 2), and 0.4% (n = 1) in pig farms, slaughterhouses, and retail markets, respectively. Multilocus sequence typing analyses revealed that the 2 most significant clonal lineages in pork production chain in Korea were ST398 (n = 25) and ST541 (n = 6). All of the 40 MRSA isolates were further characterized to investigate key genotypic and phenotypic correlates associated with the emergence and spread of clonal complex 398 (CC398; ST398, and ST541) LA-MRSA. Although the prevalence of swine-associated MRSA was still relatively low and mostly restricted to pig farms, multidrug-resistant CC398 LA-MRSA isolates with new spa types (t18102 and t18103) were identified as a major clonal lineage. The CC398 LA-MRSA strains tended to exhibit increased levels of multiple drug resistance (MDR) phenotype compared with non-CC398 MRSA strains. Of note, in comparison with non-CC398 MRSA isolates, CC398 LA-MRSA isolates exhibited significantly enhanced tetracycline (TET) and zinc resistance. These findings suggested that co-selection pressure associated with MDR phenotype, especially TET resistance, and zinc resistance may have played a significant role in the emergence and persistence of CC398 LA-MRSA in pig farms in Korea.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.