DOI QR코드

DOI QR Code

Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment

  • Back, Seung Hyun (Department of Animal Science and Technology, School of Bioresources and Bioscience, Chung-Ang University) ;
  • Eom, Hong Sik (Department of Animal Science and Technology, School of Bioresources and Bioscience, Chung-Ang University) ;
  • Lee, Haeng Ho (Department of Animal Science and Technology, School of Bioresources and Bioscience, Chung-Ang University) ;
  • Lee, Gi Yong (Department of Animal Science and Technology, School of Bioresources and Bioscience, Chung-Ang University) ;
  • Park, Kun Taek (Department of Biotechnology, Inje University) ;
  • Yang, Soo-Jin (Department of Animal Science and Technology, School of Bioresources and Bioscience, Chung-Ang University)
  • Received : 2019.09.04
  • Accepted : 2019.10.15
  • Published : 2020.01.31

Abstract

The emergence of livestock-associated (LA)-methicillin-resistant Staphylococcus aureus (MRSA) in livestock animal has become a significant zoonotic concern. In the present study, we investigated nationwide prevalence of LA-MRSA across pork production chain including pig farms, slaughterhouses, and retail markets. A total of 40 MRSA strains were isolated during the investigation and the overall prevalence of MRSA was 3.4% (n = 37), 0.6% (n = 2), and 0.4% (n = 1) in pig farms, slaughterhouses, and retail markets, respectively. Multilocus sequence typing analyses revealed that the 2 most significant clonal lineages in pork production chain in Korea were ST398 (n = 25) and ST541 (n = 6). All of the 40 MRSA isolates were further characterized to investigate key genotypic and phenotypic correlates associated with the emergence and spread of clonal complex 398 (CC398; ST398, and ST541) LA-MRSA. Although the prevalence of swine-associated MRSA was still relatively low and mostly restricted to pig farms, multidrug-resistant CC398 LA-MRSA isolates with new spa types (t18102 and t18103) were identified as a major clonal lineage. The CC398 LA-MRSA strains tended to exhibit increased levels of multiple drug resistance (MDR) phenotype compared with non-CC398 MRSA strains. Of note, in comparison with non-CC398 MRSA isolates, CC398 LA-MRSA isolates exhibited significantly enhanced tetracycline (TET) and zinc resistance. These findings suggested that co-selection pressure associated with MDR phenotype, especially TET resistance, and zinc resistance may have played a significant role in the emergence and persistence of CC398 LA-MRSA in pig farms in Korea.

Keywords

Acknowledgement

This research was supported by a fund by Research of Korea Centers for Disease Control and Prevention (2017NER54060 to S.J.Y.). This research was also supported by the Chung-Ang University Graduate Research Scholarship (S.H.B) in 2017.

References

  1. Bartels MD, Boye K, Rhod Larsen A, Skov R, Westh H. Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark. Emerg Infect Dis 2007;13:1533-1540. https://doi.org/10.3201/eid1310.070503
  2. Kim ES, Song JS, Lee HJ, Choe PG, Park KH, Cho JH, Park WB, Kim SH, Bang JH, Kim DM, Park KU, Shin S, Lee MS, Choi HJ, Kim NJ, Kim EC, Oh MD, Kim HB, Choe KW. A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. J Antimicrob Chemother 2007;60:1108-1114. https://doi.org/10.1093/jac/dkm309
  3. Sahibzada S, Abraham S, Coombs GW, Pang S, Hernandez-Jover M, Jordan D, Heller J. Transmission of highly virulent community-associated MRSA ST93 and livestock-associated MRSA ST398 between humans and pigs in Australia. Sci Rep 2017;7:5273. https://doi.org/10.1038/s41598-017-04789-0
  4. Goncalves da Silva A, Baines SL, Carter GP, Heffernan H, French NP, Ren X, Seemann T, Bulach D, Kwong J, Stinear TP, Howden BP, Williamson DA. A phylogenomic framework for assessing the global emergence and evolution of clonal complex 398 methicillin-resistant Staphylococcus aureus. Microb Genom 2017;3:e000105. https://doi.org/10.1099/mgen.0.000105
  5. Sorensen AI, Toft N, Boklund A, Espinosa-Gongora C, Graesboll K, Larsen J, Halasa T. A mechanistic model for spread of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) within a pig herd. PLoS One 2017;12:e0188429. https://doi.org/10.1371/journal.pone.0188429
  6. Witte W, Kresken M, Braulke C, Cuny C. Increasing incidence and widespread dissemination of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in central Europe, with special reference to German hospitals. Clin Microbiol Infect 1997;3:414-422. https://doi.org/10.1111/j.1469-0691.1997.tb00277.x
  7. Crombe F, Argudin MA, Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. Transmission dynamics of methicillin-resistant Staphylococcus aureus in pigs. Front Microbiol 2013;4:57. https://doi.org/10.3389/fmicb.2013.00057
  8. Sharma M, Nunez-Garcia J, Kearns AM, Doumith M, Butaye PR, Argudin MA, Lahuerta-Marin A, Pichon B, AbuOun M, Rogers J, Ellis RJ, Teale C, Anjum MF. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex (CC) 398 isolated from UK animals belong to European lineages. Front Microbiol 2016;7:1741.
  9. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 2012;3:e00305-11.
  10. Lim SK, Nam HM, Jang GC, Lee HS, Jung SC, Kwak HS. The first detection of methicillin-resistant Staphylococcus aureus ST398 in pigs in Korea. Vet Microbiol 2012;155:88-92. https://doi.org/10.1016/j.vetmic.2011.08.011
  11. Moon DC, Jeong SK, Hyun BH, Lim SK. Prevalence and characteristics of methicillin-resistant Staphylococcus aureus isolates in pigs and pig farmers in Korea. Foodborne Pathog Dis 2019;16:256-261. https://doi.org/10.1089/fpd.2018.2509
  12. Moon DC, Tamang MD, Nam HM, Jeong JH, Jang GC, Jung SC, Park YH, Lim SK. Identification of livestock-associated methicillin-resistant Staphylococcus aureus isolates in Korea and molecular comparison between isolates from animal carcasses and slaughterhouse workers. Foodborne Pathog Dis 2015;12:327-334. https://doi.org/10.1089/fpd.2014.1868
  13. Larsen J, Clasen J, Hansen JE, Paulander W, Petersen A, Larsen AR, Frees D. Copresence of tet(K) and tet(M) in livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 is associated with increased fitness during exposure to sublethal concentrations of tetracycline. Antimicrob Agents Chemother 2016;60:4401-4403. https://doi.org/10.1128/AAC.00426-16
  14. Moodley A, Nielsen SS, Guardabassi L. Effects of tetracycline and zinc on selection of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 398 in pigs. Vet Microbiol 2011;152:420-423. https://doi.org/10.1016/j.vetmic.2011.05.025
  15. Sieber RN, Skov RL, Nielsen J, Schulz J, Price LB, Aarestrup FM, Larsen AR, Stegger M, Larsen J. Drivers and dynamics of methicillin-resistant livestock-associated Staphylococcus aureus CC398 in pigs and humans in Denmark. MBio 2018;9:e02142-18.
  16. Zdovc I, Ocepek M, Pirs T, Krt B, Pinter L. Microbiological features of Staphylococcus schleiferi subsp. coagulans, isolated from dogs and possible misidentification with other canine coagulase-positive staphylococci. J Vet Med B Infect Dis Vet Public Health 2004;51:449-454. https://doi.org/10.1111/j.1439-0450.2004.00792.x
  17. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. CLSI document M100-S27. CLSI, Wayne, 2017.
  18. Dyer DW, Iandolo JJ. Rapid isolation of DNA from Staphylococcus aureus. Appl Environ Microbiol 1983;46:283-285. https://doi.org/10.1128/aem.46.1.283-285.1983
  19. Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmee M, Wauters G, Gala JL. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol 1995;33:2864-2867. https://doi.org/10.1128/jcm.33.11.2864-2867.1995
  20. Boye K, Bartels MD, Andersen IS, Moller JA, Westh H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect 2007;13:725-727. https://doi.org/10.1111/j.1469-0691.2007.01720.x
  21. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000;38:1008-1015. https://doi.org/10.1128/JCM.38.3.1008-1015.2000
  22. Uhlen M, Guss B, Nilsson B, Gatenbeck S, Philipson L, Lindberg M. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem 1984;259:1695-1702. https://doi.org/10.1016/S0021-9258(17)43463-6
  23. Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 2003;41:5442-5448. https://doi.org/10.1128/JCM.41.12.5442-5448.2003
  24. Gilot P, Lina G, Cochard T, Poutrel B. Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol 2002;40:4060-4067. https://doi.org/10.1128/JCM.40.11.4060-4067.2002
  25. Becker K, Roth R, Peters G. Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol 1998;36:2548-2553. https://doi.org/10.1128/JCM.36.9.2548-2553.1998
  26. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999;29:1128-1132. https://doi.org/10.1086/313461
  27. Mehrotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 2000;38:1032-1035. https://doi.org/10.1128/JCM.38.3.1032-1035.2000
  28. Hu DL, Omoe K, Shimoda Y, Nakane A, Shinagawa K. Induction of emetic response to staphylococcal enterotoxins in the house musk shrew (Suncus murinus). Infect Immun 2003;71:567-570. https://doi.org/10.1128/IAI.71.1.567-570.2003
  29. Cavaco LM, Hasman H, Stegger M, Andersen PS, Skov R, Fluit AC, Ito T, Aarestrup FM. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in methicillin-resistant Staphylococcus aureus CC398 isolates. Antimicrob Agents Chemother 2010;54:3605-3608. https://doi.org/10.1128/AAC.00058-10
  30. Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 2001;15:209-215. https://doi.org/10.1006/mcpr.2001.0363
  31. Aarestrup FM, Hasman H. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet Microbiol 2004;100:83-89. https://doi.org/10.1016/j.vetmic.2004.01.013
  32. Hau SJ, Frana T, Sun J, Davies PR, Nicholson TL. Zinc resistance within swine-associated methicillin-resistant Staphylococcus aureus isolates in the united states is associated with multilocus sequence type lineage. Appl Environ Microbiol 2017;83:e00756-17.
  33. Smith TC, Wardyn SE. Human infections with Staphylococcus aureus CC398. Curr Environ Health Rep 2015;2:41-51. https://doi.org/10.1007/s40572-014-0034-8
  34. van der Mee-Marquet NL, Corvaglia A, Haenni M, Bertrand X, Franck JB, Kluytmans J, Girard M, Quentin R, Francois P. Emergence of a novel subpopulation of CC398 Staphylococcus aureus infecting animals is a serious hazard for humans. Front Microbiol 2014;5:652.
  35. Wang W, Liu F, Baloch Z, Zhang CS, Ma K, Peng ZX, Yan SF, Hu YJ, Gan X, Dong YP, Bai Y, Li FQ, Yan XM, Ma AG, Xu J. Genotypic characterization of methicillin-resistant Staphylococcus aureus isolated from pigs and retail foods in China. Biomed Environ Sci 2017;30:570-580. https://doi.org/10.3967/bes2017.076
  36. Lekkerkerk WS, van Wamel WJ, Snijders SV, Willems RJ, van Duijkeren E, Broens EM, Wagenaar JA, Lindsay JA, Vos MC. What is the origin of livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 isolates from humans without livestock contact? an epidemiological and genetic analysis. J Clin Microbiol 2015;53:1836-1841. https://doi.org/10.1128/JCM.02702-14
  37. Khanna T, Friendship R, Dewey C, Weese JS. Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 2008;128:298-303. https://doi.org/10.1016/j.vetmic.2007.10.006
  38. Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, Capuano AW, Herwaldt LA, Diekema DJ. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS One 2009;4:e4258. https://doi.org/10.1371/journal.pone.0004258
  39. Gomez-Sanz E, Torres C, Lozano C, Fernandez-Perez R, Aspiroz C, Ruiz-Larrea F, Zarazaga M. Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathog Dis 2010;7:1269-1277. https://doi.org/10.1089/fpd.2010.0610
  40. Tenhagen BA, Fetsch A, Stuhrenberg B, Schleuter G, Guerra B, Hammerl JA, Hertwig S, Kowall J, Kampe U, Schroeter A, Braunig J, Kasbohrer A, Appel B. Prevalence of MRSA types in slaughter pigs in different German abattoirs. Vet Rec 2009;165:589-593. https://doi.org/10.1136/vr.165.20.589
  41. de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC, van de Giessen AW, van Duijkeren E, Huijsdens XW. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 2007;122:366-372. https://doi.org/10.1016/j.vetmic.2007.01.027
  42. Grontvedt CA, Elstrom P, Stegger M, Skov RL, Skytt Andersen P, Larssen KW, Urdahl AM, Angen O, Larsen J, Amdal S, Lotvedt SM, Sunde M, Bjornholt JV. Methicillin-resistant Staphylococcus aureus CC398 in humans and pigs in Norway: a "One Health" perspective on introduction and transmission. Clin Infect Dis 2016;63:1431-1438. https://doi.org/10.1093/cid/ciw552
  43. Verkade E, Kluytmans J. Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect Genet Evol 2014;21:523-530. https://doi.org/10.1016/j.meegid.2013.02.013
  44. Becker K, Ballhausen B, Kahl BC, Kock R. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Vet Microbiol 2017;200:33-38. https://doi.org/10.1016/j.vetmic.2015.11.013
  45. Li J, Jiang N, Ke Y, Fessler AT, Wang Y, Schwarz S, Wu C. Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Vet Microbiol 2017;201:183-187. https://doi.org/10.1016/j.vetmic.2017.01.017
  46. Kim ES, Lee HJ, Chung GT, Lee YS, Shin DH, Jung SI, Song KH, Park WB, Kim NJ, Park KU, Kim EC, Oh MD, Kim HB. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates in Korea. J Clin Microbiol 2011;49:1979-1982. https://doi.org/10.1128/JCM.00098-11
  47. Agerso Y, Hasman H, Cavaco LM, Pedersen K, Aarestrup FM. Study of methicillin resistant Staphylococcus aureus (MRSA) in Danish pigs at slaughter and in imported retail meat reveals a novel MRSA type in slaughter pigs. Vet Microbiol 2012;157:246-250. https://doi.org/10.1016/j.vetmic.2011.12.023