• Title/Summary/Keyword: multi-sampling

Search Result 635, Processing Time 0.023 seconds

Implementation of the multi-target tracker for MIROSOT

  • In, Chu-Sik;Choi, Yong-Hee;Lee, Ja-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.828-831
    • /
    • 1997
  • One of the most important design factor for the image tracker is the speed of the data processing which allows real-time operation of the system and provides reasonably accurate performance at the same time. Use of powerful DSP alone does not guarantee to meet such requirement. In this paper, a simple efficient algorithm for real-time multi-target image tracking is suggested. The suggested method is based on a recursive centroiding technique and color table look-up. This method has been successfully implemented in a image processing system for Micro-Robot Soccer Tournament(MIROSOT). This tracker can track positions of a ball, 3 enemies, and 3 agents at the same time. The experimental results show that the processing time for each frame of image is less than 7ms, which is well within the 60Hz sampling interval for real-time operation.

  • PDF

Image processing technique for Optical Camera Communication (OCC에서의 이미지 처리 기술)

  • Nguyen, Trang;Le, Nam-Tuan;Jang, Yeong Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.47-52
    • /
    • 2014
  • This paper introduces the Optical Camera Communications (OCC) using image processing technique. The architecture and operation of OCC system are given. To enhance data rate which is limited by sampling operation of commercial 30fps camera, multi colors transmission technique is employed, leading to the importance of color image processing technique. Multi color encoding and image processing based decoding will be proposed in the paper.

Fractionally spaced blind equalization using multi-stage radius-directed algorithm (다단계 반경-지향 알고리듬을 이용한 Fractionally Spaced 블라인드 등화)

  • 이영조;강성진;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2459-2469
    • /
    • 1997
  • In this paper, the multi-stage radius-directed algorithm is applied to fractionally spaced equalizers which are insensitive to the sampling timing-phase. these equalizers exhibit good convergence characeristics when compared to fractionally spaced blind equalizers using conventional blind algorithms. Also, multi-model fractionally spaced blind equalizers, which use multiple symbol spaced blind equalizers that operate independently, converge faster than conventional fractionally spaced blind equalizers.

  • PDF

Digital Filter Design for the DSD Encoder with Multi-rate PCM Input (PCM 입력의 DSD 인코더를 위한 디지털 필터 설계)

  • Moon, Dong-Wook;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.170-172
    • /
    • 2005
  • The DSD(Direct Stream Digital) encoder, which is a standard for SACD(Super Audio Compact Disc) proposed by Sony and philips, use 1 bit representation with a sampling frequency of 2.8224 MHz (64 $\times$ 44.1 kHz). For multi-rate PCM (Pulse Code Modulation) input like as 48/96/192 kHz, a external sample-rate converter is necessary to the DSD encoder. This paper has been proposed a digital filter structure composed of sample-rate converter and interpolation filter for the DSD encoder with multi-rate (48/96/192 kHz) PCM input. without a external sample-rate converter.

  • PDF

An Improved Digital Filter Design for the DSD Encoder with Multi-rate PCM Input (다중 표본화율의 PCM 입력을 위한 개선된 DSD 인코더용 디지털 필털 설계)

  • Moon, Dong-Wook;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.358-360
    • /
    • 2005
  • The DSD(Direct Stream Digital) encoder, which is a standard for SACD(Super Audio Compact Disc) proposed by Sony and philips, uses 1 bit representation with a sampling frequency of 2.8224MHz (64${\times}$44.1kHz). For multi-rate PCM (Pulse Code Modulation) input such as 8${\sim}$192kHz, a external sample-rate converter is necessary to the DSD encoder. This paper has been proposed a digital mter structure composed of sample-rate converter and interpolaton filter for the DSD encoder with multi-rate (8${\sim}$192kHz) PCM input, without a external sample-rate converter.

  • PDF

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Design of the Target Estimation Filter based on Particle Filter Algorithm for the Multi-Function Radar (파티클 필터 알고리즘을 이용한 다기능레이더 표적 추적 필터 설계)

  • Moon, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.517-523
    • /
    • 2011
  • The estimation filter in radar systems must track targets' position within low tracking error. In the Multi-Function Radar(MFR), ${\alpha}-{\beta}$ filter and Kalman filter are widely used to track single or multiple targets. However, due to target maneuvering, these filters may not reduce tracking error, therefore, may lost target tracks. In this paper, a target tracking filter based on particle filtering algorithm is proposed for the MFR. The advantage of this method is that it can track targets within low tracking error while targets maneuver and reduce impoverishment of particles by the proposed resampling method. From the simulation results, the improved tracking performance is obtained by the proposed filtering algorithm.

Multi-Objective Optimal Design of a Single Phase AC Solenoid Actuator Used for Maximum Holding Force and Minimum Eddy Current Loss

  • Yoon, Hee-Sung;Eum, Young-Hwan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.218-223
    • /
    • 2008
  • A new Pareto-optimal design algorithm, requiring least computational work, is proposed for a single phase AC solenoid actuator with multi-design-objectives: maximizing holding force and minimizing eddy current loss simultaneously. In the algorithm, the design space is successively reduced by a suitable factor, as iteration repeats, with the center of pseudo-optimal point. At each iteration, the objective functions are approximated to a simple second-order response surface with the CCD sampling points generated within the reduced design space, and Pareto-optimal solutions are obtained by applying($1+{\lambda}$) evolution strategy with the fitness values of Pareto strength.

Performance comparison of random number generators based on Adaptive Rejection Sampling (적응 기각 추출을 기반으로 하는 난수 생성기의 성능 비교)

  • Kim, Hyotae;Jo, Seongil;Choi, Taeryon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.593-610
    • /
    • 2015
  • Adaptive Rejection Sampling (ARS) method is a well-known random number generator to acquire a random sample from a probability distribution, and has the advantage of improving the proposal distribution during the sampling procedures, which update it closer to the target distribution. However, the use of ARS is limited since it can be used only for the target distribution in the form of the log-concave function, and thus various methods have been proposed to overcome such a limitation of ARS. In this paper, we attempt to compare five random number generators based on ARS in terms of adequacy and efficiency. Based on empirical analysis using simulations, we discuss their results and make a comparison of five ARS-based methods.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.