• Title/Summary/Keyword: multi-processor

Search Result 576, Processing Time 0.03 seconds

Target Tracking Performance Verification of Surveillance Data Processing System for Air Traffic Control (항공관제용 감시자료처리시스템 항적 추적 성능 검증)

  • Eun, Yeonju;Jeon, Dae-Keun;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.171-181
    • /
    • 2012
  • As a sub-system of an air traffic control system, SDP(Surveillance Data Processor) provides with the system tracks of aircraft using the surveillance sensor data from various air traffic surveillance sensors, such as radars. Therefore, the high accuracy of tracking results is a crucial requirement for safe flights, and verification of the required system performance of SDP is an essential step in development. Moreover, the quantitative evaluation of target tracking accuracy is important for newly developed SDP, since there are several tracking methods for Multi-Sensor Multi-Target Tracking, such as MRT(Multi Radar Tracking), inevitably required as the main function of SDP. In this study, definition of required system performances, establishment of test environment, and test results for MRT performance evaluation of SDP, which is being developed in KARI(Korea Airspace Research Institute) are presented.

A Novel 3-Level Transceiver using Multi Phase Modulation for High Bandwidth

  • Jung, Dae-Hee;Park, Jung-Hwan;Kim, Chan-Kyung;Kim, Chang-Hyun;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.791-794
    • /
    • 2003
  • The increasing computational capability of processors is driving the need for high bandwidth links to communicate and store the information that is processed. Such links are often an important part of multi processor interconnection, processor-to-memory interfaces and Serial-network interfaces. This paper describes a 0.11-${\mu}{\textrm}{m}$ CMOS 4 Gbp s/pin 3-Level transceiver using RSL/(Rambus Signaling Logic) for high bandwidth. This system which uses a high-gain windowed integrating receiver with wide common-mode range which was designed in order to improve SNR when operating with the smaller input overdrive of 3-Level. For multi-gigabit/second application, the data rate is limited by Inter-Symbol Interference (ISI) caused by low pass effects of channel, process-limited on-chip clock frequency, and serial link distance. In order to detect the transmited 4Gbps/pin with 3-Level data sucessfully ,the receiver is designed using 3-stage sense amplifier. The proposed transceiver employes multi-level signaling (3-Level Pulse Amplitude Modulation) using clock multi phase, double data rate and Prbs patten generator. The transceiver shows data rate of 3.2 ~ 4.0 Gbps/pin with a 1GHz internal clock.

  • PDF

A study on the implementation of new ROBOT CONTROLLER with MULTI-TASKING and MULTI-ROBOT functions (다중 processor를 이용한 multi-robot용 제어기의 구현에 대한 연구)

  • 김성락;추상원;이충기;임형준;이용중;이인옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.507-510
    • /
    • 1988
  • The main subject of this paper is the development of new ROBOT CONTROLLER, which can support MULTI-TASKING and MULTI-ROBOT functions. The system consists of various kinds of CPU modules according to their independent jobs. Acceleration and Deceleration profile is given in order to achieve the smooth robot motion and high cycle time. Further the communication capacity should be upgraded to meet the various kinds of peripheral PA devices.

  • PDF

A Parallel Processor System for Cultural Assets Image Retrieval (문화재 검색을 위한 병렬처리기 구조)

  • Yoon, Hee-Jun;Lee, Hyung;Han, Ki-Sun;Partk, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1998
  • This paper proposes a parallel processor system which processes cultural assets image recognition and retrieval algorithm in real time. A serial algorithm which is developed for the parallel processor system is parallellized. The parallel processor system consists of a control unit, 100 PE(Processing Elements), and 10 Park's multi-access memory systems which has 11 memory modules per each one. The parallel processor system is simulated by CADENCE Verilog-XL which is a package for the hardware simulation. With the same simulated results as that of the serial algorithm, the speed ratio of the parallel algorithm to the serial one is 81. The parallel processor system we proposed is quite effective for cultural assets image processing.

  • PDF

VHDL Design for Out-of-Order Superscalar Processor of A Fully Pipelined Scheme (완전한 파이프라인 방식의 비순차실행 수퍼스칼라 프로세서의 VHDL 설계)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.99-105
    • /
    • 2021
  • Today, a superscalar processor is the basic unit or an essential component of a multi-core processor, SoCs, and GPUs. Hence, a high-performance out-of-order superscalar processor must be adopted for these systems to maximize its performance. The superscalar processor fetches, issues, executes, and writes back multiple instructions per cycle by utilizing reorder buffers and reservation stations to dynamically schedule instructions in a pipelined scheme. In this paper, a fully pipelined out-of-order superscalar processor with speculative execution is designed with VHDL and verified with GHDL. As a result of the simulation, the program composed of ARM instructions is successfully performed.

High-throughput Low-complexity Mixed-radix FFT Processor using a Dual-path Shared Complex Constant Multiplier

  • Nguyen, Tram Thi Bao;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 2017
  • This paper presents a high-throughput low-complexity 512-point eight-parallel mixed-radix multipath delay feedback (MDF) fast Fourier transform (FFT) processor architecture for orthogonal frequency division multiplexing (OFDM) applications. To decrease the number of twiddle factor (TF) multiplications, a mixed-radix $2^4/2^3$ FFT algorithm is adopted. Moreover, a dual-path shared canonical signed digit (CSD) complex constant multiplier using a multi-layer scheme is proposed for reducing the hardware complexity of the TF multiplication. The proposed FFT processor is implemented using TSMC 90-nm CMOS technology. The synthesis results demonstrate that the proposed FFT processor can lead to a 16% reduction in hardware complexity and higher throughput compared to conventional architectures.

A Study on the OpenGL Accelerating Performance Variations by the Configuration of Microprocessor (마이크로프로세서 구성에 따른 OpenGL 가속처리의 성능변화에 관한 연구)

  • Kim, Heui-Jung;Jeong, Jae-Hyun;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.311-318
    • /
    • 2006
  • In this study, the performance tests for single and dual micro processor configurations are performed to investigate how the accelerated OpenGL components and applications are dependent on processor configurations. At present, many major providers of the engineering graphics workstations have recommended that multiprocessors are better than single processor. However, we confirmed that the single processor configuration is more faster and more effective than competitive configurations and suggested the economic method to improve the performance of the engineering graphics workstations.

Code Generation and Optimization for the Flow-based Network Processor based on LLVM

  • Lee, SangHee;Lee, Hokyoon;Kim, Seon Wook;Heo, Hwanjo;Park, Jongdae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.42-45
    • /
    • 2012
  • A network processor (NP) is an application-specific instruction-set processor for fast and efficient packet processing. There are many issues in compiler's code generation and optimization due to NP's hardware constraints and special hardware support. In this paper, we describe in detail how to resolve the issues. Our compiler was developed on LLVM 3.0 and the NP target was our in-house network processor which consists of 32 64-bit RISC processors and supports multi-context with special hardware structures. Our compiler incurs only 9.36% code size overhead over hand-written code while satisfying QoS, and the generated code was tested on a real packet processing hardware, called S20 for code verification and performance evaluation.

An emotional speech synthesis markup language processor for multi-speaker and emotional text-to-speech applications (다음색 감정 음성합성 응용을 위한 감정 SSML 처리기)

  • Ryu, Se-Hui;Cho, Hee;Lee, Ju-Hyun;Hong, Ki-Hyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.523-529
    • /
    • 2021
  • In this paper, we designed and developed an Emotional Speech Synthesis Markup Language (SSML) processor. Multi-speaker emotional speech synthesis technology that can express multiple voice colors and emotional expressions have been developed, and we designed Emotional SSML by extending SSML for multiple voice colors and emotional expressions. The Emotional SSML processor has a graphic user interface and consists of following four components. First, a multi-speaker emotional text editor that can easily mark specific voice colors and emotions on desired positions. Second, an Emotional SSML document generator that creates an Emotional SSML document automatically from the result of the multi-speaker emotional text editor. Third, an Emotional SSML parser that parses the Emotional SSML document. Last, a sequencer to control a multi-speaker and emotional Text-to-Speech (TTS) engine based on the result of the Emotional SSML parser. Based on SSML which is a programming language and platform independent open standard, the Emotional SSML processor can easily integrate with various speech synthesis engines and facilitates the development of multi-speaker emotional text-to-speech applications.