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Abstract 

A network processor (NP) is an application-specific instruction-set processor for fast and efficient packet 
processing. There are many issues in compiler’s code generation and optimization due to NP’s hardware 
constraints and special hardware support. In this paper, we describe in detail how to resolve the issues. Our 
compiler was developed on LLVM 3.0 and the NP target was our in-house network processor which consists of 32 
64-bit RISC processors and supports multi-context with special hardware structures. Our compiler incurs only 
9.36% code size overhead over hand-written code while satisfying QoS, and the generated code was tested on a 
real packet processing hardware, called S20 for code verification and performance evaluation. 

 

                                                           
1 This work has been supported by ETRI OmniFlow processor compiler toolchain performance improvement (EA20121517). 

1. Introduction 

With the advent of ubiquitous computing, traffic volumes 
for Internet Protocol (IP) have been dramatically increasing 
for both fixed and mobile networks [6]. On this protocol, all 
information in forms of voice, images, video, text, and so on 
are transformed into sequences of packets, and then the 
packets are delivered through high speed network links 
where network nodes share link capacity among many clients 
and route traffic efficiently. Until recently, the network nodes 
were made by fixed ASICs. However, with the wide range of 
requirements for network nodes over time, the custom 
hardware has become a very expensive solution for service 
providers. For this reason, the trend has been to give more 
and more emphasis on programmability inside packet 
processors, and finally a network processor (NP) appears 
[15]. Currently a large number of network processors are 
commercially available in a market, such as Intel IXP2800 
[5], EZchip NP-4 [4], and so on.  

Even though we rely on great functionalities of a network 
processor for network node development, the software 
development is not trivial. Most vendors provide C compilers 
with optimized libraries, but they recommend a programmer 
to use micro codes instead of high-level languages [3]. The 
complex architecture and resource constraint on NPs make 
compiler development difficult. For example, network 
processors consist of a multi-context structure and need 
special instructions for handling the packet processing and 
bit unit operations. 

In this paper, we introduce C compiler construction and 
optimization for our network processor, called OmniFlow 
[14], based on LLVM 3.0 [13, 12]. Similar to other network 
processors [10] the OmniFlow processor has several 
constraints for compiler development. This processor does 
not support some popular instructions such as multiplication, 
load with sign extension, etc. A data memory, a stack 
memory, and a function call are not allowed, and instruction 
code size is limited. Also, when we perform load/store packet 
or flow blocks, registers have to be serially allocated. In this 
paper, we describe how to overcome these constraints and 

support various optimizations in detail. We also built an 
assembler based on the GNU binutils [11]. For performance 
evaluation, we tested network packet translation with S20 
chassis [2] and IXIA’s IxN2X network testing system [1]. 
S20 chassis is a router that contains the OmniFlow processor, 
and IxN2X is a throughput measuring instrument. Our 
compiler incurs only 9.36% code size overhead over hand-
generated code while satisfying QoS. 

This paper is organized as follows: Section 2 describes our 
OmniFlow processor organization and critical issues for 
compiler construction due to hardware constraints. Section 3 
explains code generation and optimization, and Section 4 
shows the correctness verification and performance 
evaluation. Finally, conclusion is made in Section 5. 

 
2. Omniflow Network Processor 

The OmniFlow processor is a network processor, which is 
an array of 32 64-bit RISC processors specialized for packet 
processing and multi-context operation. Each context has a 
register file, a program counter, and a context controller state 
machine. The register file has 64 32-bit registers. 
  Different from compiler construction for general 
processors, there are critical issues to be solved for the 
compiler development as follows: 
1. We need to support special instructions such as bit field 

manipulation and packet load/store instructions. On the 
contrary, the target processor does not provide widely 
used instructions in general processors such as 
multiplication, truncate store, and sign extended load. 

2. Our target hardware does not use any data memory for 
data and stack sections, but only for packet and flow. 
Therefore, a programmer cannot use local and global 
variables. Similarly, the target hardware does not allow a 
register to be spilled because there is no stack. 

3. The target processor does not use a procedure call, and 
therefore, a caller/callee convention is not used. 

4. The target hardware has the limited size of a code 
memory, which allows only 1024 lines of assembly codes.  
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3. OmniFlow Processor Compiler Development 

  We used LLVM 3.0 for our compiler construction. The 
modified and extended components of the LLVM compiler 
framework are shown in Figure 1.  

We modified the frontend for overlay optimization and 
registration of target dependent information. LLVM IR and 
SCCP (Sparse Conditional Constant Propagation) [9] 
optimization were extended for supporting the overlay 
optimization. We made many efforts for developing the 
backend such as 1) describing target information and 
selection rules, 2) supporting special instructions such as 
overlay, packet load/store, maskcmp etc, 3) printing error 
messages for unsupported instructions, 4) delay slot 
optimization. We explain these implementations in detail in 
the following subsections. 
 
3.1 Frontend and Extended LLVM IR 

  We used Clang 3.0 [8] for our frontend built in the LLVM 
package. In the frontend we registered the OmniFlow target 
specific information class and its associated information such 
as endian, data format, and register names. This information 
is used for IR code generation. 

Also, we performed overlay optimization in the frontend. 
The overlay instructions handle bit assignment and shift 
operations that are frequently used for packet processing. We 
introduced overlay IR for the instructions. Our compiler 
analyzes LLVM IR (AST, Abstract Syntax Tree) and builds 
the overlay IR. 
 
3.2 Backend 

In the backend, compiler construction and modification 
steps are the following: First, we registered the processor 
information such as the processor name, endian, and data 
format. Second, we described register information. We set 
dummy numbers to a stack pointer register and a frame 
pointer register. Also, a return address register was not 

defined because a function call is not allowed. Third, we 
defined target processor instruction sets. We needed to define 
selection rules for overlay instructions, maskcmp instructions, 
and special instructions such as packet load/store. Also, error 
messages should be printed out for unsupported instructions 
such as multiplication, truncate store, etc. Finally, in the 
backend, we described the OmniFlow assembly string 
formats for code generation. For conditional branch 
instructions, MASKCMP and MASKCMPI, there are 
different patterns depending on their condition value. 
 
3.3 Code Optimization 

We support three code optimizations: overlay 
optimization for bit field movement, maskcmp optimization 
for bit field comparison, and delay slot optimization for 
removing pipeline stalls. We explain the optimizations in 
detail in the following subsections. 

 
3.3.1 Overlay Optimization 

 Figure 2 explains formats and operations about overlay 
instructions, OVERLAYR and OVERLAYL. Each register 
(Rs and Rd in Figure 2) has a bit field mask for extracting or 
merging a bit field value. The OVERLAYL instruction 
performs the following steps at once. 
1. Extract the source register bit field value. 
2. Initialize the destination register bit field value. 
3. Shift the extracted source registers value to the left. 
4. Merge the two bit field values and, save this result at 

destination register. 
The use of overlay instructions can reduce the generated 

assembly code size and execution time significantly. So, in 
order to generate as many overlay instructions as possible, 
we modified the frontend. We found three patterns of bit 
field operations from AST which can be applied to overlay 
instructions. 

 
Figure 1. Overview of the OmniFlow processor compiler framework. The gray colored components were modified and 

extended for the OmniFlow processor compiler. 
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Figure 2. Overlay instruction format and OVERLAYL operation. OVERLAYR and OVERLAYL perform these complex 

operations at once. 
 

1. Bit field assignment: This AST pattern performs bit field 
data movement from a source bit field value to a 
destination bit field value. 

2. Bit field assignment after constant shift: This pattern is 
basically the same with bit field assignment, but it 
performs shift operation before bit field value movement. 

3. Bit field use/def patterns: Other patterns, which are not 
included in the first and second patterns.  
As a result of this optimization, bit field manipulation 

code size can be reduced to 1/4. 
At the first time, we could not generate the OVERLAY 

instruction when the size of bit field is larger than 32-bit, 
because there is no algorithm for finding accurate data 
location in the large and complex bit field structure. It is a 
critical problem, when managing large and complex bit field 
structures. So, we added algorithms for solving this problem, 
by considering a field index and a target offset. 
 
3.3.2 Maskcmp Instruction 

  MASKCMP and MASKCMPI are bit field comparison 
and conditional branch instructions. These instructions can 
compare bit field values without help from other instructions. 
MASKCMPI has one target register to be compared with 
zero in a bit mask range. MASKCMP instruction is similar 
with MASKCMPI instruction. This has one more register, 
and it compares two registers in a bit mask range, instead of 
zero. These instructions have 3 address values that are 

jumping targets. These conditional branch instructions select 
one of three jump addresses after bit field comparison. 
  Without support of MASKCMP instructions, target bit 
field values have to be extracted and then compared for the 
bit field comparison. Therefore, the use of these maskcmp 
instructions can reduce register usages and number of 
executed instructions. 
 
3.3.3 Delay Slot Optimization 

  We performed the delay slot optimization for RET and 
unconditional jump operations.  There are two delay slots 
after these instructions, and we inserted two NOPs at the 
slots. We made delay slot optimization pass, where we 
replaced NOPs with independent instructions. This 
optimization can reduce the code size significantly. 
 
4. Evaluation 

4.1 Verification 

  We evaluated our compiler implementation in a testbed 
environment which consists of the S20 chassis and the 
IxN2X network testing system. The S20 chassis is a 
commercial service controller equipped with two OmniFlow 
processors, one for the input and the other for the output 
packet processing, and the chassis has been developed in 
collaboration of ETRI and Sable networks. Three gigabit 
Ethernet ports of S20 were connected to the three ports of 
IxN2X with optical fibers. Given the egress flow of GE-0/0/1, 
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each ingress flow of GE-0/0/2 was configured to receive 
700kbps guaranteed rate service whereas the ingress flows of 
GE-0/0/0 did not receive any guarantee, i.e., the best effort 
service. 
  The output queue, where packet were waiting to be sent 
out to the egress port, of the system was implemented as a 
calendar queue which had a cylindrical shape with a time slot 
duration of 16us by default. The QoS binary determines how 
often packets of the given flow are needed to be scheduled to 
meet the service requirement, e.g., 700kbs guaranteed rate 
service, by accessing the flow block data structures in 
DRAM and computing time slot intervals with the floating 
point arithmetic operations given the observed flow arrival 
statistics. 
  For compiler evaluation, we translated a hand-written 
original assembly code into C code manually, and we used 
our compiler for assembly code generation. Then we 
compared the original code with the compiler generated 
codes.  
 
4.2 Code Size 

  Figure 3 shows the code size overhead of different code 
generations with respect to the hand-written original codes. 
Overall, the size of fully optimized code by our compiler was 
increased only 9.36% against the original code. We can see 
that MASKCMP and OVERLAY instructions greatly impact 
on the performance, but the delay optimization does not.  
 

 
Figure 3. Code size overhead with respect to the hand written 
codes. 
 
5. Conclusion 

  In this paper, we introduced compiler construction based 
on the LLVM 3.0 compiler infrastructure for the OmniFlow 
network processor. Different from a general processor, NP 
has many hardware constraints and supports special 
instructions for QoS packet flow processing. Therefore, most 
NP codes are hand-written. This paper describes in detail 
about compiler construction issues and their solutions with 
optimizations for NP. 
   For performance evaluation, we tested QoS control code 
on a real router, S20 chassis. Our compiler incurs only 9.36% 
code size overhead over hand-generated code while 
satisfying QoS. 
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