

 Code Generation and Optimization for the Flow-based Network
Processor based on LLVM1

SangHee Lee*, Hokyoon Lee*, Seon Wook Kim*, Hwanjo Heo**, Jongdae Park**
*School of Electrical and Computer Engineering, Korea University

**Net. Computing Convergence Research Team, ETRI
e-mail: {lshron, hokyoon79, seon}@korea.ac.kr, {hwanjo, parkjd}@etri.re.kr

Abstract

A network processor (NP) is an application-specific instruction-set processor for fast and efficient packet
processing. There are many issues in compiler’s code generation and optimization due to NP’s hardware
constraints and special hardware support. In this paper, we describe in detail how to resolve the issues. Our
compiler was developed on LLVM 3.0 and the NP target was our in-house network processor which consists of 32
64-bit RISC processors and supports multi-context with special hardware structures. Our compiler incurs only
9.36% code size overhead over hand-written code while satisfying QoS, and the generated code was tested on a
real packet processing hardware, called S20 for code verification and performance evaluation.

1 This work has been supported by ETRI OmniFlow processor compiler toolchain performance improvement (EA20121517).

1. Introduction

With the advent of ubiquitous computing, traffic volumes
for Internet Protocol (IP) have been dramatically increasing
for both fixed and mobile networks [6]. On this protocol, all
information in forms of voice, images, video, text, and so on
are transformed into sequences of packets, and then the
packets are delivered through high speed network links
where network nodes share link capacity among many clients
and route traffic efficiently. Until recently, the network nodes
were made by fixed ASICs. However, with the wide range of
requirements for network nodes over time, the custom
hardware has become a very expensive solution for service
providers. For this reason, the trend has been to give more
and more emphasis on programmability inside packet
processors, and finally a network processor (NP) appears
[15]. Currently a large number of network processors are
commercially available in a market, such as Intel IXP2800
[5], EZchip NP-4 [4], and so on.

Even though we rely on great functionalities of a network
processor for network node development, the software
development is not trivial. Most vendors provide C compilers
with optimized libraries, but they recommend a programmer
to use micro codes instead of high-level languages [3]. The
complex architecture and resource constraint on NPs make
compiler development difficult. For example, network
processors consist of a multi-context structure and need
special instructions for handling the packet processing and
bit unit operations.

In this paper, we introduce C compiler construction and
optimization for our network processor, called OmniFlow
[14], based on LLVM 3.0 [13, 12]. Similar to other network
processors [10] the OmniFlow processor has several
constraints for compiler development. This processor does
not support some popular instructions such as multiplication,
load with sign extension, etc. A data memory, a stack
memory, and a function call are not allowed, and instruction
code size is limited. Also, when we perform load/store packet
or flow blocks, registers have to be serially allocated. In this
paper, we describe how to overcome these constraints and

support various optimizations in detail. We also built an
assembler based on the GNU binutils [11]. For performance
evaluation, we tested network packet translation with S20
chassis [2] and IXIA’s IxN2X network testing system [1].
S20 chassis is a router that contains the OmniFlow processor,
and IxN2X is a throughput measuring instrument. Our
compiler incurs only 9.36% code size overhead over hand-
generated code while satisfying QoS.

This paper is organized as follows: Section 2 describes our
OmniFlow processor organization and critical issues for
compiler construction due to hardware constraints. Section 3
explains code generation and optimization, and Section 4
shows the correctness verification and performance
evaluation. Finally, conclusion is made in Section 5.

2. Omniflow Network Processor

The OmniFlow processor is a network processor, which is
an array of 32 64-bit RISC processors specialized for packet
processing and multi-context operation. Each context has a
register file, a program counter, and a context controller state
machine. The register file has 64 32-bit registers.
 Different from compiler construction for general
processors, there are critical issues to be solved for the
compiler development as follows:
1. We need to support special instructions such as bit field

manipulation and packet load/store instructions. On the
contrary, the target processor does not provide widely
used instructions in general processors such as
multiplication, truncate store, and sign extended load.

2. Our target hardware does not use any data memory for
data and stack sections, but only for packet and flow.
Therefore, a programmer cannot use local and global
variables. Similarly, the target hardware does not allow a
register to be spilled because there is no stack.

3. The target processor does not use a procedure call, and
therefore, a caller/callee convention is not used.

4. The target hardware has the limited size of a code
memory, which allows only 1024 lines of assembly codes.

제38회 한국정보처리학회 추계학술대회 논문집 제19권 2호 (2012. 11)

- 42 -

제38회 한국정보처리학회 추계학술발표대회 논문집 제19권 2호 (2012. 11)

3. OmniFlow Processor Compiler Development

 We used LLVM 3.0 for our compiler construction. The
modified and extended components of the LLVM compiler
framework are shown in Figure 1.

We modified the frontend for overlay optimization and
registration of target dependent information. LLVM IR and
SCCP (Sparse Conditional Constant Propagation) [9]
optimization were extended for supporting the overlay
optimization. We made many efforts for developing the
backend such as 1) describing target information and
selection rules, 2) supporting special instructions such as
overlay, packet load/store, maskcmp etc, 3) printing error
messages for unsupported instructions, 4) delay slot
optimization. We explain these implementations in detail in
the following subsections.

3.1 Frontend and Extended LLVM IR

 We used Clang 3.0 [8] for our frontend built in the LLVM
package. In the frontend we registered the OmniFlow target
specific information class and its associated information such
as endian, data format, and register names. This information
is used for IR code generation.

Also, we performed overlay optimization in the frontend.
The overlay instructions handle bit assignment and shift
operations that are frequently used for packet processing. We
introduced overlay IR for the instructions. Our compiler
analyzes LLVM IR (AST, Abstract Syntax Tree) and builds
the overlay IR.

3.2 Backend

In the backend, compiler construction and modification
steps are the following: First, we registered the processor
information such as the processor name, endian, and data
format. Second, we described register information. We set
dummy numbers to a stack pointer register and a frame
pointer register. Also, a return address register was not

defined because a function call is not allowed. Third, we
defined target processor instruction sets. We needed to define
selection rules for overlay instructions, maskcmp instructions,
and special instructions such as packet load/store. Also, error
messages should be printed out for unsupported instructions
such as multiplication, truncate store, etc. Finally, in the
backend, we described the OmniFlow assembly string
formats for code generation. For conditional branch
instructions, MASKCMP and MASKCMPI, there are
different patterns depending on their condition value.

3.3 Code Optimization

We support three code optimizations: overlay
optimization for bit field movement, maskcmp optimization
for bit field comparison, and delay slot optimization for
removing pipeline stalls. We explain the optimizations in
detail in the following subsections.

3.3.1 Overlay Optimization

 Figure 2 explains formats and operations about overlay
instructions, OVERLAYR and OVERLAYL. Each register
(Rs and Rd in Figure 2) has a bit field mask for extracting or
merging a bit field value. The OVERLAYL instruction
performs the following steps at once.
1. Extract the source register bit field value.
2. Initialize the destination register bit field value.
3. Shift the extracted source registers value to the left.
4. Merge the two bit field values and, save this result at

destination register.
The use of overlay instructions can reduce the generated

assembly code size and execution time significantly. So, in
order to generate as many overlay instructions as possible,
we modified the frontend. We found three patterns of bit
field operations from AST which can be applied to overlay
instructions.

Figure 1. Overview of the OmniFlow processor compiler framework. The gray colored components were modified and

extended for the OmniFlow processor compiler.

제38회 한국정보처리학회 추계학술대회 논문집 제19권 2호 (2012. 11)

- 43 -

제38회 한국정보처리학회 추계학술발표대회 논문집 제19권 2호 (2012. 11)

Figure 2. Overlay instruction format and OVERLAYL operation. OVERLAYR and OVERLAYL perform these complex

operations at once.

1. Bit field assignment: This AST pattern performs bit field
data movement from a source bit field value to a
destination bit field value.

2. Bit field assignment after constant shift: This pattern is
basically the same with bit field assignment, but it
performs shift operation before bit field value movement.

3. Bit field use/def patterns: Other patterns, which are not
included in the first and second patterns.
As a result of this optimization, bit field manipulation

code size can be reduced to 1/4.
At the first time, we could not generate the OVERLAY

instruction when the size of bit field is larger than 32-bit,
because there is no algorithm for finding accurate data
location in the large and complex bit field structure. It is a
critical problem, when managing large and complex bit field
structures. So, we added algorithms for solving this problem,
by considering a field index and a target offset.

3.3.2 Maskcmp Instruction

 MASKCMP and MASKCMPI are bit field comparison
and conditional branch instructions. These instructions can
compare bit field values without help from other instructions.
MASKCMPI has one target register to be compared with
zero in a bit mask range. MASKCMP instruction is similar
with MASKCMPI instruction. This has one more register,
and it compares two registers in a bit mask range, instead of
zero. These instructions have 3 address values that are

jumping targets. These conditional branch instructions select
one of three jump addresses after bit field comparison.
 Without support of MASKCMP instructions, target bit
field values have to be extracted and then compared for the
bit field comparison. Therefore, the use of these maskcmp
instructions can reduce register usages and number of
executed instructions.

3.3.3 Delay Slot Optimization

 We performed the delay slot optimization for RET and
unconditional jump operations. There are two delay slots
after these instructions, and we inserted two NOPs at the
slots. We made delay slot optimization pass, where we
replaced NOPs with independent instructions. This
optimization can reduce the code size significantly.

4. Evaluation

4.1 Verification

 We evaluated our compiler implementation in a testbed
environment which consists of the S20 chassis and the
IxN2X network testing system. The S20 chassis is a
commercial service controller equipped with two OmniFlow
processors, one for the input and the other for the output
packet processing, and the chassis has been developed in
collaboration of ETRI and Sable networks. Three gigabit
Ethernet ports of S20 were connected to the three ports of
IxN2X with optical fibers. Given the egress flow of GE-0/0/1,

제38회 한국정보처리학회 추계학술대회 논문집 제19권 2호 (2012. 11)

- 44 -

제38회 한국정보처리학회 추계학술발표대회 논문집 제19권 2호 (2012. 11)

each ingress flow of GE-0/0/2 was configured to receive
700kbps guaranteed rate service whereas the ingress flows of
GE-0/0/0 did not receive any guarantee, i.e., the best effort
service.
 The output queue, where packet were waiting to be sent
out to the egress port, of the system was implemented as a
calendar queue which had a cylindrical shape with a time slot
duration of 16us by default. The QoS binary determines how
often packets of the given flow are needed to be scheduled to
meet the service requirement, e.g., 700kbs guaranteed rate
service, by accessing the flow block data structures in
DRAM and computing time slot intervals with the floating
point arithmetic operations given the observed flow arrival
statistics.
 For compiler evaluation, we translated a hand-written
original assembly code into C code manually, and we used
our compiler for assembly code generation. Then we
compared the original code with the compiler generated
codes.

4.2 Code Size

 Figure 3 shows the code size overhead of different code
generations with respect to the hand-written original codes.
Overall, the size of fully optimized code by our compiler was
increased only 9.36% against the original code. We can see
that MASKCMP and OVERLAY instructions greatly impact
on the performance, but the delay optimization does not.

Figure 3. Code size overhead with respect to the hand written
codes.

5. Conclusion

 In this paper, we introduced compiler construction based
on the LLVM 3.0 compiler infrastructure for the OmniFlow
network processor. Different from a general processor, NP
has many hardware constraints and supports special
instructions for QoS packet flow processing. Therefore, most
NP codes are hand-written. This paper describes in detail
about compiler construction issues and their solutions with
optimizations for NP.
 For performance evaluation, we tested QoS control code
on a real router, S20 chassis. Our compiler incurs only 9.36%
code size overhead over hand-generated code while
satisfying QoS.

참고문헌

[1] IXIA. IxN2X.
 http://www.ixiacom.com/products/ixn2x/index.php.
[2] Sable Networks. S20 chassis.
 http://www.sablenetworks.com/idex.php/en/products.
[3] S. Meijer, J. Walters, D. Snuijf, B. Kienhis, "Automatic

partitioning and mapping of stream-based applications
onto the Intel IXP Network Processor," In Proceeding of
the10th International Worshop on Software & Compilers
for Embedded Systems, pages 23-30, Nice, France, April
2007.

[4] EZCHIPS. NP-4. 100-Gigabit Network Processor for
Carrier Ethernet Applications.

 http://www.ezchip.com/Images/pdf/NP-
4_Short_Brief_online.pdf.

[5] M. Adiletta, M. Bluth, D. Bernstein, G. Wolrich, and H
Wilkinson, "The Next Generation of Intel IXP Network
Processor," Intel Technology Journal, vol. 6, no. 3 pages
6-18, August 2002

[6] J. S. Marcus. "IP interconnection, traffic trends, and
wholesale and retail prices," BEREC/OECD expert
workshop on IP Interconnection, Brussels, Belgium,
November 2011.

[7] J. Jones. "Abstract Syntax Tree Implementation Idioms,"
The 10th Conference on Pattern Languages of Programs
2003, Illinois, September 2003.

[8] C. Lattner. “LLVM and Clang: Next generation compiler
technology,” In BSDCan 2008: The BSD Conference,
Ottawa, Canada, May 2008.

[9] M. N. Wegman, and F. K. Zadeck. "Constant
propagation with conditional branch," In Proceeding
ACM Transactions on Programming Languages and
Systems, vol. 13, issue 2, pages 181-210, April 1991.

[10] T. Sassen, N. Ventura, and S.Shepstone. "The
Implementation of a Differentiated Services Architecture
on Network Processors," Southern African
Telecommunication Networks and Applications
Conference, Spier Wine Estate, Western Cape, South
Africa, September 2004.

[11] Binutils. http://www.gnu.org/software/binutils/.
[12] LLVM. http://www.llvm.org.
[13] C. Lattner, and V. Adve. “LLVM: A Compilation

Framework for Life-long Program Analysis &
Transformation,” In Proceeding of the International
Symposium on Code Generation and Optimization, pages
75-86, San Jose, CA, USA, March 2004.

[14] B. Y. Yoon, B. C. Lee, and S. S. Lee. “Scalable Flow-
based Network Processor for Premium Network
Service,” 2011 International Conference on ICT
Convergence, pages 436-440, Seoul, Korea, September
2011.

[15] M. Ahmadi, and S Wong. “Network Processors:
Challenges and Trends,” In Proceeding of the 17th
Annual Workshop on Circuits, Systems and Signal
Processing, pages 223-232, Veldhoven,
Netherland, November 2006.

제38회 한국정보처리학회 추계학술대회 논문집 제19권 2호 (2012. 11)

- 45 -

제38회 한국정보처리학회 추계학술발표대회 논문집 제19권 2호 (2012. 11)

