• Title/Summary/Keyword: multi-band

Search Result 1,283, Processing Time 0.027 seconds

SIMULATIONS OF TORUS REVERBERATION MAPPING EXPERIMENTS WITH SPHEREX

  • Kim, Minjin;Jeong, Woong-Seob;Yang, Yujin;Son, Jiwon;Ho, Luis C.;Woo, Jong-Hak;Im, Myungshin;Byun, Woowon
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.37-47
    • /
    • 2021
  • Reverberation mapping (RM) is an efficient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep field. Based on this information, we compute the efficiency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of ~ 20 mag in B-band, lags of ≤ 750 days for tori can be measured for more than ~ 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of ~ 21-22 mag are available, RM measurements are possible for up to ~ 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.

Signal Enhancement of a Variable Rate Vocoder with a Hybrid domain SNR Estimator

  • Park, Hyung Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.962-977
    • /
    • 2019
  • The human voice is a convenient method of information transfer between different objects such as between men, men and machine, between machines. The development of information and communication technology, the voice has been able to transfer farther than before. The way to communicate, it is to convert the voice to another form, transmit it, and then reconvert it back to sound. In such a communication process, a vocoder is a method of converting and re-converting a voice and sound. The CELP (Code-Excited Linear Prediction) type vocoder, one of the voice codecs, is adapted as a standard codec since it provides high quality sound even though its transmission speed is relatively low. The EVRC (Enhanced Variable Rate CODEC) and QCELP (Qualcomm Code-Excited Linear Prediction), variable bit rate vocoders, are used for mobile phones in 3G environment. For the real-time implementation of a vocoder, the reduction of sound quality is a typical problem. To improve the sound quality, that is important to know the size and shape of noise. In the existing sound quality improvement method, the voice activated is detected or used, or statistical methods are used by the large mount of data. However, there is a disadvantage in that no noise can be detected, when there is a continuous signal or when a change in noise is large.This paper focused on finding a better way to decrease the reduction of sound quality in lower bit transmission environments. Based on simulation results, this study proposed a preprocessor application that estimates the SNR (Signal to Noise Ratio) using the spectral SNR estimation method. The SNR estimation method adopted the IMBE (Improved Multi-Band Excitation) instead of using the SNR, which is a continuous speech signal. Finally, this application improves the quality of the vocoder by enhancing sound quality adaptively.

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

Target Recognition Algorithm Based on a Scanned Image on a Millimeter-Wave(Ka-Band) Multi-Mode Seeker (스캔 영상 기반의 밀리미터파(Ka 밴드) 복합모드 탐색기 표적인식 알고리즘 연구)

  • Roh, Kyung A;Jung, Jun Young;Song, Sung Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.177-180
    • /
    • 2019
  • To improve the accuracy rate of guided weapons, many studies have been conducted on the accurate detection and identification of targets from sea clutter. Because of the variety and complicated characteristics of both sea-clutter and target signals, an active target recognition technique is required. In this study, we propose an algorithm to distinguish clutter and recognize targets by applying a fractal signature(FS) classifier, which is a fractal dimension, and a high-resolution target image(HRTI) classifier, which applies scene matching to an image formed from a scanned image. Simulation results using the algorithm revealed that the HRTI classifier recognized targets 1 and 2 at a 100 % rate, whereas the FS classifier recognized targets 1 and 2 at rates of 90 % and 93 %, respectively.

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

ESTIMATION OF NITROGEN-TO-IRON ABUNDANCE RATIOS FROM LOW-RESOLUTION SPECTRA

  • Kim, Changmin;Lee, Young Sun;Beers, Timothy C.;Masseron, Thomas
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.2
    • /
    • pp.23-36
    • /
    • 2022
  • We present a method to determine nitrogen abundance ratios with respect to iron ([N/Fe]) from molecular CN-band features observed in low-resolution (R ~ 2000) stellar spectra obtained by the Sloan Digital Sky Survey (SDSS) and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Various tests are carried out to check the systematic and random errors of our technique, and the impact of signal-to-noise (S/N) ratios of stellar spectra on the determined [N/Fe]. We find that the uncertainty of our derived [N/Fe] is less than 0.3 dex for S/N ratios larger than 10 in the ranges Teff = [4000, 6000] K, log g = [0.0, 3.5], [Fe/H] = [-3.0, 0.0], [C/Fe] = [-1.0, +4.5], and [N/Fe] = [-1.0, +4.5], the parameter space that we are interested in to identify N-enhanced stars in the Galactic halo. A star-by-star comparison with a sample of stars with [N/Fe] estimates available from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) also suggests a similar level of uncertainty in our measured [N/Fe], after removing its systematic error. Based on these results, we conclude that our method is able to reproduce [N/Fe] from low-resolution spectroscopic data, with an uncertainty sufficiently small to discover N-rich stars that presumably originated from disrupted Galactic globular clusters.

Study on the Interfacial Reactions between Gallium and Cu/Au Multi-layer Metallization (갈륨과 Cu/Au 금속층과의 계면반응 연구)

  • Bae, Junhyuk;Sohn, Yoonchul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.73-79
    • /
    • 2022
  • In this study, a reaction study between Ga, which has recently been spotlighted as a low-temperature bonding material, and Cu, a representative electrode material, was conducted to investigate information necessary for low-temperature soldering applications. Interfacial reaction and intermetallic compound (IMC) growth were observed and analyzed by reacting Ga and Cu/Au substrates in the temperature range of 80-200℃. The main IMC growing at the reaction interface was CuGa2 phase, and AuGa2 IMC with small particle sizes was formed on the upper part and Cu9Ga4 IMC with a thin band shape on the lower part of the CuGa2 layer. CuGa2 particles showed a scallop shape, and the particle size increased without significant shape change as the reaction time increased, similar to the case of Cu6Sn5 growth. As a result of analyzing the CuGa2 growth mechanism, the time exponent was calculated to be ~3.0 in the temperature range of 120-200℃, and the activation energy was measured to be 17.7 kJ/mol.

Development of Easy-to-Use Crane-Tip Controller for Forestry Crane

  • Ki-Duck, Kim;Beom-Soo, Shin
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • Forestry crane work in a forest harvester or forwarder is regarded as one of most hard work requiring a very high level of operation skill. The operator must handle two or more multi-axes joysticks simultaneously to control the multiple manipulators for maneuvering the crane-tip to its intended location. This study has been carried out to develop a crane-tip controller which can intuitively maneuver the crane-tip, resulting in improving the productivity by decreasing the technical difficulty of control as well as reducing the workload. The crane-tip controller consists of a single 2-axis joystick and a control algorithm run on microcontroller. Lab-scale forestry crane was constructed using electric cylinders. The crane-tip control algorithm has the crane-tip follow the waypoints generated on the given path considering the dead band region using LBO (Lateral Boundary Offset). A speed control gain to change the speed of relevant cylinders relatively is applied as well. By the P (Proportional) control within the control interval of 20 msec, the average error of crane-tip control on the predefined straight path turned out to be 14.5 mm in all directions. When the joystick is used the waypoints are generated in real time by the direction signal from the joystick. In this case, the average error of path control was 12.4 mm for straight up, straight forward and straight down movements successively at a certain constant speed setting. In the slant movement of crane-tip by controlling two axes of joystick simultaneously, the movement of crane-tip was controlled in the average error of 15.9 mm when the crane-tip is moved up and down while moving toward forward direction. It concluded that the crane-tip control was possible using the control algorithm developed in this study.

X-ray / gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method

  • Reddy, B. Chinnappa;Manjunatha, H.C.;Vidya, Y.S.;Sridhar, K.N.;Pasha, U. Mahaboob;Seenappa, L.;Sadashivamurthy, B.;Dhananjaya, N.;Sathish, K.V.;Gupta, P.S. Damodara
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1062-1070
    • /
    • 2022
  • In the present communication, pure and stable α-Bismuth Oxide (Bi2O3) nanoparticles (NPs) were synthesized by low temperature solution combustion method using urea as a fuel and calcined at 500℃. The synthesized sample was characterized by using powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Visible absorption spectroscopy. The PXRD pattern confirms the formation of mono-clinic, stable and low temperature phase α-Bi2O3. The direct optical energy band gap was estimated by using Wood and Tauc's relation which was found to be 2.81 eV. The characterized sample was studied for X-ray/gamma ray shielding properties in the energy range 0.081-1.332 MeV using NaI (Tl) detector and multi channel analyzer (MCA). The measured shielding parameters agrees well with the theory, whereas, slight deviation up to 20% is observed below 356 keV. This deviation is mainly due to the influence of atomic size of the target medium. Furthermore an accurate theory is necessary to explain the interaction of X-ray/gamma ray with the NPs.The present work opens new window to use this facile, economical, efficient, low temperature method to synthesize nanomaterials for X-ray/gamma ray shielding purpose.

An optimized deployment strategy of smart smoke sensors in a large space

  • Liu, Pingshan;Fang, Junli;Huang, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3544-3564
    • /
    • 2022
  • With the development of the NB-IoT (Narrow band Internet of Things) and smart cities, coupled with the emergence of smart smoke sensors, new requirements and issues have been introduced to study on the deployment of sensors in large spaces. Previous research mainly focuses on the optimization of wireless sensors in some monitoring environments, including three-dimensional terrain or underwater space. There are relatively few studies on the optimization deployment problem of smart smoke sensors, and leaving large spaces with obstacles such as libraries out of consideration. This paper mainly studies the deployment issue of smart smoke sensors in large spaces by considering the fire probability of fire areas and the obstacles in a monitoring area. To cope with the problems of coverage blind areas and coverage redundancy when sensors are deployed randomly in large spaces, we proposed an optimized deployment strategy of smart smoke sensors based on the PSO (Particle Swarm Optimization) algorithm. The deployment problem is transformed into a multi-objective optimization problem with many constraints of fire probability and barriers, while minimizing the deployment cost and maximizing the coverage accuracy. In this regard, we describe the structure model in large space and a coverage model firstly, then a mathematical model containing two objective functions is established. Finally, a deployment strategy based on PSO algorithm is designed, and the performance of the deployment strategy is verified by a number of simulation experiments. The obtained experimental and numerical results demonstrates that our proposed strategy can obtain better performance than uniform deployment strategies in terms of all the objectives concerned, further demonstrates the effectiveness of our strategy. Additionally, the strategy we proposed also provides theoretical guidance and a practical basis for fire emergency management and other departments to better deploy smart smoke sensors in a large space.