Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.2.073

Study on the Interfacial Reactions between Gallium and Cu/Au Multi-layer Metallization  

Bae, Junhyuk (Dept. of Welding & Joining Science Engineering, Chosun University)
Sohn, Yoonchul (Dept. of Welding & Joining Science Engineering, Chosun University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.2, 2022 , pp. 73-79 More about this Journal
Abstract
In this study, a reaction study between Ga, which has recently been spotlighted as a low-temperature bonding material, and Cu, a representative electrode material, was conducted to investigate information necessary for low-temperature soldering applications. Interfacial reaction and intermetallic compound (IMC) growth were observed and analyzed by reacting Ga and Cu/Au substrates in the temperature range of 80-200℃. The main IMC growing at the reaction interface was CuGa2 phase, and AuGa2 IMC with small particle sizes was formed on the upper part and Cu9Ga4 IMC with a thin band shape on the lower part of the CuGa2 layer. CuGa2 particles showed a scallop shape, and the particle size increased without significant shape change as the reaction time increased, similar to the case of Cu6Sn5 growth. As a result of analyzing the CuGa2 growth mechanism, the time exponent was calculated to be ~3.0 in the temperature range of 120-200℃, and the activation energy was measured to be 17.7 kJ/mol.
Keywords
liquid metal; gallium; intermetallic compound; interfacial reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Y. Prokhorenko, V. V. Roshchupkin, M. A. Pokrasin, S. V. Prokhorenko, and V. V. Kotov, "Liquid gallium: potential uses as a heat-transfer agent", High Temperature, 38(6), 954-968 (2000).   DOI
2 M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (egain): A liquid metal alloy for the formation of stable structures in microchannels at room temperature", Adv. Funct. Mater., 18(7), 1097-1104 (2008).   DOI
3 M. D. Dickey, "Emerging applications of liquid metals featuring surface oxides", ACS. Appl. Mater. Interfaces, 6(21), 18369-18379 (2014).   DOI
4 K. E. Spells, "The determination of the viscosity of liquid gallium over an extended nrange of temperature", Proceedings of the Physical Society (1926-1948)., 48(2), 299 (1936).   DOI
5 V. Y. Prokhorenko, V. V. Roshchupkin, M. A. Pokrasin, S. V. Prokhorenko, and V. V. Kotov, "Liquid gallium: potential uses as a heat-transfer agent", High Temperature, 38(6), 954-968 (2000).   DOI
6 H. Ge, and J. Liu, "Keeping smartphones cool with gallium phase change material", J. Heat. Transfer, 135(5) (2013).
7 R. K. Kramer, J. W. Boley, H. A. Stone, J. C. Weaver, and R. J. Wood, "Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys", Langmuir, 30(2), 533-539 (2014).   DOI
8 F. Gray, D. A. Kramer, and J. D. Bliss, "Gallium and gallium compounds", Kirk-Othmer Encyclopedia of Chemical Technology (2000).
9 D. Zrnic, and D. S. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", J. Alloys. Compd., 18(1), 67-68 (1969).
10 J. H. Kim, S. Kim, J. H. So, K. Kim, and H. J. Koo, "Cytotoxicity of Gallium-Indium Liquid Metal in Aqueous Environment", ACS. Appl. Mater. Interfaces, 10(20), 17448-17454 (2018).   DOI
11 K. Khoshmanesh, S. Y. Tang, J. Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantar-Zadeh, and M. D. Dickey, "Liquid metal enabled microfluidics", Lab. Chip, 17(6), 974-993 (2017).   DOI
12 A. Tabatabai, A. Fassler, C. Usiak, and C. Majidi, "Liquid-phase gallium-indium alloy electronics with microcontact printing", Langmuir, 29(20), 6194-6200 (2013).   DOI
13 S. W. Chen, J. M. Lin, T. C. Yang, and Y. H. Du, "Interfacial Reactions in the Cu/Ga/Co and Cu/Ga/Ni Samples", J. Electron. Mater., 48(6), 3643-3654 (2019).   DOI
14 J. B. Li, L. N. Ji, J. K. Liang, Y. Zhang, J. Luo, C. R. Li, and G. H. Rao, "A thermodynamic assessment of the copper-gallium system", Calphad., 32(2), 447-453 (2008).   DOI
15 T. Sawada, A. Netchaev, H. Ninokata, and H. Endo, "Gallium-cooled liquid metallic-fueled fast reactor", Prog. Nucl. Energy, 37(1-4), 313-319 (2000).   DOI
16 M. D. Dickey, "Stretchable and soft electronics using liquid metals", Adv. Mater., 29(27), 1606425 (2017).   DOI
17 S. K. Lin, C. L. Cho, and H. M. Chang, "Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples", J. Electron. Mater., 43(1), 204-211 (2014).   DOI
18 S. K. Lin, H. M. Chang, C. L. Cho, Y. C. Liu, and Y. K Kuo, "Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits", Electron. Mater. Lett., 11(4), 687-694 (2015).   DOI
19 H. K. Kim, and K. N. Tu, "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening", Phys. Rev. B, 53(23), 16027 (1996).   DOI
20 M. Schaefer, R. A. Fournelle, and J. Liang, "Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control", J. Electron. Mater., 27(11), 1167-1176 (1998).   DOI
21 H. Okamoto, "Au-Ga (Gold-Gallium)", J. Phase Equilib. Diffus., 34(2), 174-175 (2013).   DOI
22 S. Liu, X. F. Tan, S. D. McDonald, Q. Gu, S. Matsumura, and K. Nogita, "Interfacial reactions between Ga and Cu-xNi (x=0, 2, 6, 10, 14) substrates and the strength of Cu-xNi/Ga/CuxNi joints", Intermetallics, 133, 107168 (2021).   DOI
23 M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, and G. M. Whitesides, "Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature", Adv. Funct. Mater., 18(7), 1097-1104 (2008).   DOI
24 J. R. Rumble, CRC handbook of chemistry and physics, CRC Press, Boca Raton, FL (2017).