DOI QR코드

DOI QR Code

SIMULATIONS OF TORUS REVERBERATION MAPPING EXPERIMENTS WITH SPHEREX

  • Kim, Minjin (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Jeong, Woong-Seob (Korea Astronomy and Space Science Institute) ;
  • Yang, Yujin (Korea Astronomy and Space Science Institute) ;
  • Son, Jiwon (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University) ;
  • Ho, Luis C. (Kavli Institute for Astronomy and Astrophysics, Peking University) ;
  • Woo, Jong-Hak (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Im, Myungshin (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Byun, Woowon (Korea Astronomy and Space Science Institute)
  • Received : 2020.08.24
  • Accepted : 2021.02.19
  • Published : 2021.04.30

Abstract

Reverberation mapping (RM) is an efficient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep field. Based on this information, we compute the efficiency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of ~ 20 mag in B-band, lags of ≤ 750 days for tori can be measured for more than ~ 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of ~ 21-22 mag are available, RM measurements are possible for up to ~ 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.

Keywords

References

  1. Almeyda, T., Robinson, A., Richmond, M., Nikutta, R. & McDonough, B. 2020, Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: An Investigation of Torus Response Functions, ApJ, 891, 26 https://doi.org/10.3847/1538-4357/ab6aa1
  2. Antonucci, R. 1993, Unified Models for Active Galactic Nuclei and Quasars, ARA&A, 31, 473 https://doi.org/10.1146/annurev.aa.31.090193.002353
  3. Assef, R. J., Eisenhardt, P. R. M., Stern, D., et al. 2015, Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot Dust-Obscured Galaxies, ApJ, 804, 27 https://doi.org/10.1088/0004-637X/804/1/27
  4. Barth, A. J., Bennert, V. N., Canalizo, G., et al. 2015, The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves, ApJS, 217, 26 https://doi.org/10.1088/0067-0049/217/2/26
  5. Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, The Zwicky Transient Facility: System Overview, Performance, and First Results, PASP, 131, 018002 https://doi.org/10.1088/1538-3873/aaecbe
  6. Bentz, M. C., Walsh, J. L., Barth, A. J., et al. 2009, The Lick AGN Monitoring Project: Broad-line Region Radii and Black Hole Masses from Reverberation Mapping of Hβ, ApJ, 705, 199 https://doi.org/10.1088/0004-637X/705/1/199
  7. Bentz, M. C., Denney, K. D., Grier, Catherine J., et al. 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149 https://doi.org/10.1088/0004-637X/767/2/149
  8. Blandford, R. D. & McKee, C. F. 1982, Reverberation Mapping of the Emission Line Regions of Seyfert Galaxies and Quasars, ApJ, 255, 419 https://doi.org/10.1086/159843
  9. Caplar, N., Lilly, S, J., & Trakhtenbrot, B. 2017, Optical Variability of AGNs in the PTF/iPTF Survey, ApJ, 834, 111 https://doi.org/10.3847/1538-4357/834/2/111
  10. Clavel, J., Wamsteker, W., & Glass, I. S. 1989, Hot Dust on the Outskirts of the Broad-Line Region in Fairall 9, ApJ, 337, 236 https://doi.org/10.1086/167100
  11. Dore, O., Werner, M. W., Ashby, M., et al. 2016, Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science, arXiv:1606.07039
  12. Dore, O., Werner, M. W., Ashby, M., et al. 2018, Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey II: Report of a Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Other Astronomy Observatories, arXiv:1805.05489
  13. Du, P., Lu, K.-X., Zhang, Z.-X., et al. 2016, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region, ApJ, 825, 126 https://doi.org/10.3847/0004-637X/825/2/126
  14. Du, P., Zhang, Z.-X., Wang, K., et al. 2018, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags, ApJ, 856, 6 https://doi.org/10.3847/1538-4357/aaae6b
  15. Fine, S., Shanks, T., Croom, S. M., et al. 2012, Composite Reverberation Mapping, MNRAS, 427, 2701 https://doi.org/10.1111/j.1365-2966.2012.21248.x
  16. Flesch, E. W. 2015, The Half Million Quasars (HMQ) Catalogue, PASA, 32, 10 https://doi.org/10.1017/pasa.2015.10
  17. Flesch, E. W. 2019, The Million Quasars (Milliquas) Catalogue, v6.4, arXiv:1912.05614
  18. Gaskell, C. M., & Peterson, B. M. 1987, The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes, ApJS, 65, 1 https://doi.org/10.1086/191216
  19. Giveon, U., Maoz, D., Kaspi, S., et al. 1999, Long-term Optical Variability Properties of the Palomar-Green Quasars, MNRAS, 306, 637 https://doi.org/10.1046/j.1365-8711.1999.02556.x
  20. Glass, I. S. 2004, Long-term Infrared Photometry of Seyferts, MNRAS, 350, 1049 https://doi.org/10.1111/j.1365-2966.2004.07712.x
  21. GRAVITY Collaboration (Dexter, J., et al.) 2020, The Resolved Size and Structure of Hot Dust in the Immediate Vicinity of AGN, A&A, 634, A92 https://doi.org/10.1051/0004-6361/201936486
  22. GRAVITY Collaboration (Pfuhl, O., et al.) 2020, An Image of the Dust Sublimation Region in the Nucleus of NGC 1068, A&A, 634, A1 https://doi.org/10.1051/0004-6361/201936255
  23. Grier, C. J., Trump, J. R., Shen, Y., et al. 2017, The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry, ApJ, 851, 21 https://doi.org/10.3847/1538-4357/aa98dc
  24. Hickox, R. C., Myers, A. D., Greene, J. E., et al. 2017, Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars, ApJ, 849, 53 https://doi.org/10.3847/1538-4357/aa8c77
  25. Ho, L. C. & Kim, M. 2014, The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies, ApJ, 789, 17 https://doi.org/10.1088/0004-637X/789/1/17
  26. Honig, S. F. 2014, Dust Reverberation Mapping in the Era of Big Optical Surveys and its Cosmological Application, ApJL, 784, L4 https://doi.org/10.1088/2041-8205/784/1/L4
  27. Ho, L. C. & Kim, M. 2014, The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies, ApJ, 789, 17 https://doi.org/10.1088/0004-637X/789/1/17
  28. Ivezic, Z., Kahn, S, M., Tyson, J. A., et al. 2019, LSST: From Science Drivers to Reference Design and Anticipated Data Products, ApJ, 873, 111 https://doi.org/10.3847/1538-4357/ab042c
  29. Jaffe, W., Meisenheimer, K., Rottgering, H. J. A., et al. 2004, The Central Dusty Torus in the Active Nucleus of NGC 1068, Nature, 429, 47 https://doi.org/10.1038/nature02531
  30. Kasliwal, V. P., Vogeley, M, S., & Richards, G, T. 2015, Are the Variability Properties of the Kepler AGN Light Curves Consistent with a Damped Random Walk?, MNRAS, 451, 4328 https://doi.org/10.1093/mnras/stv1230
  31. Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei, ApJ, 533, 631 https://doi.org/10.1086/308704
  32. Kim, J., Im, M., Choi, C., et al. 2019, Medium-band Photometry Reverberation Mapping of Nearby Active Galactic Nuclei, ApJ, 884, 103 https://doi.org/10.3847/1538-4357/ab40cd
  33. Kim, M.. Ho, L. C., Peng, C. Y., et al. 2017, Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei, ApJS, 232, 21 https://doi.org/10.3847/1538-4365/aa8a75
  34. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  35. King, A. L., Martini, P., Davis, T. M., et al. 2015, Simulations of the OzDES AGN Reverberation Mapping Project, MNRAS, 453, 1701 https://doi.org/10.1093/mnras/stv1718
  36. Koshida, S., Minezaki, T., Yoshii, Y. et al. 2014, Reverberation Measurements of the Inner Radius of the Dust Torus in 17 Seyfert Galaxies, ApJ, 788, 159 https://doi.org/10.1088/0004-637X/788/2/159
  37. Li, J., Shen, Y., Horne, K. et al. 2017, The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1, ApJ, 846, 79 https://doi.org/10.3847/1538-4357/aa845d
  38. Lopez-Gonzaga, N., Burtscher, L., Tristram, K. R. W., Meisenheimer, K., & Schartmann, M. 2016, Mid-infrared Interferometry of 23 AGN Tori: On the Significance of Polar-elongated Emission, A&A, 591, A47 https://doi.org/10.1051/0004-6361/201527590
  39. Lupton, R. H. 2005, SDSS Data Release 14, Transformations between SDSS Magnitudes and Other Systems, http://www.sdss.org/dr14/algorithms/sdssUBVRITransform#Lupton2005
  40. Lyu, J., Rieke, G. H., & Smith, P. S. 2019, Mid-IR Variability and Dust Reverberation Mapping of Low-z Quasars. I. Data, Methods, and Basic Results, 2019, 886, 33 https://doi.org/10.3847/1538-4357/ab481d
  41. MacLeod, C. L., Ivezic, Z, Sesar, B., et al. 2012, A Description of Quasar Variability Measured Using Repeated SDSS and POSS Imaging, ApJ, 753, 106 https://doi.org/10.1088/0004-637X/753/2/106
  42. Minezaki, T., Yoshii, Y., Kobayashi, Y., et al. 2019, Reverberation Measurements of the Inner Radii of the Dust Tori in Quasars, ApJ, 886, 150 https://doi.org/10.3847/1538-4357/ab4f7b
  43. Mushotzky, R. F., Edelson, R., Baumgartner, W., et al. 2011, Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei, ApJL, 743, L12 https://doi.org/10.1088/2041-8205/743/1/L12
  44. Onken, C. A., Ferrarese, L., Merritt, D., et al. 2004, Super-massive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei, ApJ, 615, 645 https://doi.org/10.1086/424655
  45. Peterson, B. M., Wanders, I., Horne, K., et al. 1998, On Uncertainties in Cross-Correlation Lags and the Reality of Wavelength-dependent Continuum Lags in Active Galactic Nuclei, PASP, 748, 660 https://doi.org/10.1086/316177
  46. Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database, ApJ, 613, 682 https://doi.org/10.1086/423269
  47. Peterson, B. M., Grier, C. J., Horne, K., et al. 2014, Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469, ApJ, 795, 149 https://doi.org/10.1088/0004-637X/795/2/149
  48. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, Planck 2015 results. XIII. Cosmological parameters, A&A, 594, 13
  49. Rakshit, S., Woo, J.-H., Gallo, E., et al. 2019, The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs, ApJ, 886, 93 https://doi.org/10.3847/1538-4357/ab49fd
  50. Richards, G. T., Croom, S. M., Anderson, S. F., et al. 2005, The 2dF-SDSS LRG and QSO (2SLAQ) Survey: The z < 2.1 Quasar Luminosity Function from 5645 Quasars to g = 21.85, MNRAS, 360, 839 https://doi.org/10.1111/j.1365-2966.2005.09096.x
  51. Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample, AJ, 123, 2945 https://doi.org/10.1086/340187
  52. Richards, G. T., Lacy, M., Storrie-Lombardi, L. J., et al. 2006, Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars, ApJS, 166, 470 https://doi.org/10.1086/506525
  53. Sakata, Y., Minezaki, T., Yoshii, Y., et al. 2010, Long-Term Optical Continuum Color Variability of Nearby Active Galactic Nuclei, ApJ, 711, 461 https://doi.org/10.1088/0004-637X/711/1/461
  54. Sanchez-Saez, P., Lira, P., Mejia-Restrepo, J., et al. 2018, The QUEST-La Silla AGN Variability Survey: Connection between AGN Variability and Black Hole Physical Properties, ApJ, 864, 87 https://doi.org/10.3847/1538-4357/aad7f9
  55. Secrest, N. J., Dudik, R. P., Dorland, B. N., et al. 2015, Identification of 1.4 Million Active Galactic Nuclei in the Mid-Infrared using WISE Data, ApJS, 221, 12 https://doi.org/10.1088/0067-0049/221/1/12
  56. Shen, Y., Brandt, W. N., Dawson, K. S., et al. 2015, The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview, ApJS, 216, 4
  57. Shen, Y., Hall, P. B., Horne, K., et al. 2019, The Sloan Digital Sky Survey Reverberation Mapping Project: Sample Characterization, ApJS, 241, 34 https://doi.org/10.3847/1538-4365/ab074f
  58. Sun, M., Grier, C. J., & Peterson, B. M. 2018, PyCCF: Python Cross Correlation Function for Reverberation Mapping Studies, ascl:1805.032
  59. Urry, C. M., & Padovani, P. 1995, Unified Schemes for Radio-Loud Active Galactic Nuclei, PASP, 107, 803 https://doi.org/10.1086/133630
  60. Woo, J.-H., Son, D., & Gallo, E., et al. 2019, Seoul National University AGN Monitoring Project. I. Strategy and Sample, JKAS, 52, 109
  61. Woo, J.-H., Treu, T., Barth, A. J., et al. 2010, The Lick AGN Monitoring Project: The MBH* Relation for Reverberation-mapped Active Galaxies, ApJ, 716, 269 https://doi.org/10.1088/0004-637X/716/1/269
  62. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, AJ, 140, 1868 https://doi.org/10.1088/0004-6256/140/6/1868
  63. Yang, Q., Shen, Y., & Liu, X., et al. 2020, Dust Reverberation Mapping in Distant Quasars from Optical and Mid-Infrared Imaging Surveys, ApJ, 900, 58 https://doi.org/10.3847/1538-4357/aba59b
  64. Yu, Q. & Tremaine, S. 2002, Observational Constraints on Growth of Massive Black Holes, MNRAS, 335, 965 https://doi.org/10.1046/j.1365-8711.2002.05532.x