Browse > Article
http://dx.doi.org/10.5303/JKAS.2021.54.2.37

SIMULATIONS OF TORUS REVERBERATION MAPPING EXPERIMENTS WITH SPHEREX  

Kim, Minjin (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University)
Jeong, Woong-Seob (Korea Astronomy and Space Science Institute)
Yang, Yujin (Korea Astronomy and Space Science Institute)
Son, Jiwon (Department of Astronomy and Atmospheric Sciences, College of Natural Sciences, Kyungpook National University)
Ho, Luis C. (Kavli Institute for Astronomy and Astrophysics, Peking University)
Woo, Jong-Hak (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Im, Myungshin (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
Byun, Woowon (Korea Astronomy and Space Science Institute)
Publication Information
Journal of The Korean Astronomical Society / v.54, no.2, 2021 , pp. 37-47 More about this Journal
Abstract
Reverberation mapping (RM) is an efficient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep field. Based on this information, we compute the efficiency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of ~ 20 mag in B-band, lags of ≤ 750 days for tori can be measured for more than ~ 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of ~ 21-22 mag are available, RM measurements are possible for up to ~ 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.
Keywords
black hole physics; galaxies: active; galaxies: Seyfert; quasars: general; infrared: galaxies; dust; surveys;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Almeyda, T., Robinson, A., Richmond, M., Nikutta, R. & McDonough, B. 2020, Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: An Investigation of Torus Response Functions, ApJ, 891, 26   DOI
2 Antonucci, R. 1993, Unified Models for Active Galactic Nuclei and Quasars, ARA&A, 31, 473   DOI
3 Assef, R. J., Eisenhardt, P. R. M., Stern, D., et al. 2015, Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot Dust-Obscured Galaxies, ApJ, 804, 27   DOI
4 Barth, A. J., Bennert, V. N., Canalizo, G., et al. 2015, The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves, ApJS, 217, 26   DOI
5 Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, The Zwicky Transient Facility: System Overview, Performance, and First Results, PASP, 131, 018002   DOI
6 Bentz, M. C., Walsh, J. L., Barth, A. J., et al. 2009, The Lick AGN Monitoring Project: Broad-line Region Radii and Black Hole Masses from Reverberation Mapping of Hβ, ApJ, 705, 199   DOI
7 Bentz, M. C., Denney, K. D., Grier, Catherine J., et al. 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149   DOI
8 Blandford, R. D. & McKee, C. F. 1982, Reverberation Mapping of the Emission Line Regions of Seyfert Galaxies and Quasars, ApJ, 255, 419   DOI
9 Caplar, N., Lilly, S, J., & Trakhtenbrot, B. 2017, Optical Variability of AGNs in the PTF/iPTF Survey, ApJ, 834, 111   DOI
10 Clavel, J., Wamsteker, W., & Glass, I. S. 1989, Hot Dust on the Outskirts of the Broad-Line Region in Fairall 9, ApJ, 337, 236   DOI
11 Dore, O., Werner, M. W., Ashby, M., et al. 2016, Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science, arXiv:1606.07039
12 Dore, O., Werner, M. W., Ashby, M., et al. 2018, Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey II: Report of a Community Workshop on the Scientific Synergies Between the SPHEREx Survey and Other Astronomy Observatories, arXiv:1805.05489
13 Flesch, E. W. 2015, The Half Million Quasars (HMQ) Catalogue, PASA, 32, 10   DOI
14 Du, P., Lu, K.-X., Zhang, Z.-X., et al. 2016, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region, ApJ, 825, 126   DOI
15 Du, P., Zhang, Z.-X., Wang, K., et al. 2018, Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags, ApJ, 856, 6   DOI
16 Fine, S., Shanks, T., Croom, S. M., et al. 2012, Composite Reverberation Mapping, MNRAS, 427, 2701   DOI
17 Gaskell, C. M., & Peterson, B. M. 1987, The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes, ApJS, 65, 1   DOI
18 Giveon, U., Maoz, D., Kaspi, S., et al. 1999, Long-term Optical Variability Properties of the Palomar-Green Quasars, MNRAS, 306, 637   DOI
19 Glass, I. S. 2004, Long-term Infrared Photometry of Seyferts, MNRAS, 350, 1049   DOI
20 GRAVITY Collaboration (Dexter, J., et al.) 2020, The Resolved Size and Structure of Hot Dust in the Immediate Vicinity of AGN, A&A, 634, A92   DOI
21 GRAVITY Collaboration (Pfuhl, O., et al.) 2020, An Image of the Dust Sublimation Region in the Nucleus of NGC 1068, A&A, 634, A1   DOI
22 Grier, C. J., Trump, J. R., Shen, Y., et al. 2017, The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry, ApJ, 851, 21   DOI
23 Hickox, R. C., Myers, A. D., Greene, J. E., et al. 2017, Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars, ApJ, 849, 53   DOI
24 Ivezic, Z., Kahn, S, M., Tyson, J. A., et al. 2019, LSST: From Science Drivers to Reference Design and Anticipated Data Products, ApJ, 873, 111   DOI
25 Ho, L. C. & Kim, M. 2014, The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies, ApJ, 789, 17   DOI
26 Honig, S. F. 2014, Dust Reverberation Mapping in the Era of Big Optical Surveys and its Cosmological Application, ApJL, 784, L4   DOI
27 Ho, L. C. & Kim, M. 2014, The Black Hole Mass Scale of Classical and Pseudo Bulges in Active Galaxies, ApJ, 789, 17   DOI
28 Jaffe, W., Meisenheimer, K., Rottgering, H. J. A., et al. 2004, The Central Dusty Torus in the Active Nucleus of NGC 1068, Nature, 429, 47   DOI
29 Kasliwal, V. P., Vogeley, M, S., & Richards, G, T. 2015, Are the Variability Properties of the Kepler AGN Light Curves Consistent with a Damped Random Walk?, MNRAS, 451, 4328   DOI
30 Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei, ApJ, 533, 631   DOI
31 Kim, J., Im, M., Choi, C., et al. 2019, Medium-band Photometry Reverberation Mapping of Nearby Active Galactic Nuclei, ApJ, 884, 103   DOI
32 Kim, M.. Ho, L. C., Peng, C. Y., et al. 2017, Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei, ApJS, 232, 21   DOI
33 Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNET: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
34 King, A. L., Martini, P., Davis, T. M., et al. 2015, Simulations of the OzDES AGN Reverberation Mapping Project, MNRAS, 453, 1701   DOI
35 Lupton, R. H. 2005, SDSS Data Release 14, Transformations between SDSS Magnitudes and Other Systems, http://www.sdss.org/dr14/algorithms/sdssUBVRITransform#Lupton2005
36 Koshida, S., Minezaki, T., Yoshii, Y. et al. 2014, Reverberation Measurements of the Inner Radius of the Dust Torus in 17 Seyfert Galaxies, ApJ, 788, 159   DOI
37 Li, J., Shen, Y., Horne, K. et al. 2017, The Sloan Digital Sky Survey Reverberation Mapping Project: Composite Lags at z ≤ 1, ApJ, 846, 79   DOI
38 Lopez-Gonzaga, N., Burtscher, L., Tristram, K. R. W., Meisenheimer, K., & Schartmann, M. 2016, Mid-infrared Interferometry of 23 AGN Tori: On the Significance of Polar-elongated Emission, A&A, 591, A47   DOI
39 Lyu, J., Rieke, G. H., & Smith, P. S. 2019, Mid-IR Variability and Dust Reverberation Mapping of Low-z Quasars. I. Data, Methods, and Basic Results, 2019, 886, 33   DOI
40 MacLeod, C. L., Ivezic, Z, Sesar, B., et al. 2012, A Description of Quasar Variability Measured Using Repeated SDSS and POSS Imaging, ApJ, 753, 106   DOI
41 Minezaki, T., Yoshii, Y., Kobayashi, Y., et al. 2019, Reverberation Measurements of the Inner Radii of the Dust Tori in Quasars, ApJ, 886, 150   DOI
42 Mushotzky, R. F., Edelson, R., Baumgartner, W., et al. 2011, Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei, ApJL, 743, L12   DOI
43 Onken, C. A., Ferrarese, L., Merritt, D., et al. 2004, Super-massive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei, ApJ, 615, 645   DOI
44 Peterson, B. M., Wanders, I., Horne, K., et al. 1998, On Uncertainties in Cross-Correlation Lags and the Reality of Wavelength-dependent Continuum Lags in Active Galactic Nuclei, PASP, 748, 660   DOI
45 Rakshit, S., Woo, J.-H., Gallo, E., et al. 2019, The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs, ApJ, 886, 93   DOI
46 Peterson, B. M., Ferrarese, L., Gilbert, K. M., et al. 2004, Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database, ApJ, 613, 682   DOI
47 Peterson, B. M., Grier, C. J., Horne, K., et al. 2014, Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469, ApJ, 795, 149   DOI
48 Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, Planck 2015 results. XIII. Cosmological parameters, A&A, 594, 13
49 Richards, G. T., Croom, S. M., Anderson, S. F., et al. 2005, The 2dF-SDSS LRG and QSO (2SLAQ) Survey: The z < 2.1 Quasar Luminosity Function from 5645 Quasars to g = 21.85, MNRAS, 360, 839   DOI
50 Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample, AJ, 123, 2945   DOI
51 Richards, G. T., Lacy, M., Storrie-Lombardi, L. J., et al. 2006, Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars, ApJS, 166, 470   DOI
52 Sakata, Y., Minezaki, T., Yoshii, Y., et al. 2010, Long-Term Optical Continuum Color Variability of Nearby Active Galactic Nuclei, ApJ, 711, 461   DOI
53 Sanchez-Saez, P., Lira, P., Mejia-Restrepo, J., et al. 2018, The QUEST-La Silla AGN Variability Survey: Connection between AGN Variability and Black Hole Physical Properties, ApJ, 864, 87   DOI
54 Secrest, N. J., Dudik, R. P., Dorland, B. N., et al. 2015, Identification of 1.4 Million Active Galactic Nuclei in the Mid-Infrared using WISE Data, ApJS, 221, 12   DOI
55 Woo, J.-H., Son, D., & Gallo, E., et al. 2019, Seoul National University AGN Monitoring Project. I. Strategy and Sample, JKAS, 52, 109
56 Shen, Y., Brandt, W. N., Dawson, K. S., et al. 2015, The Sloan Digital Sky Survey Reverberation Mapping Project: Technical Overview, ApJS, 216, 4
57 Shen, Y., Hall, P. B., Horne, K., et al. 2019, The Sloan Digital Sky Survey Reverberation Mapping Project: Sample Characterization, ApJS, 241, 34   DOI
58 Sun, M., Grier, C. J., & Peterson, B. M. 2018, PyCCF: Python Cross Correlation Function for Reverberation Mapping Studies, ascl:1805.032
59 Woo, J.-H., Treu, T., Barth, A. J., et al. 2010, The Lick AGN Monitoring Project: The MBH* Relation for Reverberation-mapped Active Galaxies, ApJ, 716, 269   DOI
60 Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance, AJ, 140, 1868   DOI
61 Yang, Q., Shen, Y., & Liu, X., et al. 2020, Dust Reverberation Mapping in Distant Quasars from Optical and Mid-Infrared Imaging Surveys, ApJ, 900, 58   DOI
62 Yu, Q. & Tremaine, S. 2002, Observational Constraints on Growth of Massive Black Holes, MNRAS, 335, 965   DOI
63 Flesch, E. W. 2019, The Million Quasars (Milliquas) Catalogue, v6.4, arXiv:1912.05614
64 Urry, C. M., & Padovani, P. 1995, Unified Schemes for Radio-Loud Active Galactic Nuclei, PASP, 107, 803   DOI