• Title/Summary/Keyword: multi material

Search Result 2,510, Processing Time 0.027 seconds

Oscillation Characteristics of the Multi-Layered VCO for using 960 MHz Band (960 MHz 다층구조 VCO 발진특성)

  • Rhie, Dong-Hee;Park, Gwi-Nam;Lee, Hun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.653-656
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was DuPont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2$ mm(0.11[cc]).

  • PDF

Numerical Simulation for a Multi-Stage Deep Drawing of Anisotropic SUS409L Sheet into a Rectangular Cup (초기 이방성 SUS409L 박판재의 직사각 컵 성형을 위한 다단 디프드로잉 공정 적용에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2013
  • Recently, electric vehicles and hybrid cars are being promoted as alternatives to reduce automobile emissions. Generally, thin sheet materials such as aluminum alloy AA300X and cold-rolled steel sheet such as JIS-G-3141 are used for the container for the lithium-ion secondary batteries. In this study, a multi-stage deep drawing process is used to produce a rectangular cup from thin stainless steel sheet material, SUS409L, with an initial blank thickness of 0.4mm for the battery container application. Numerical simulations of the first through the fifth stages for the multi-stage deep drawing with thin SUS409L sheet were conducted using LS-Dyna3D Implicit/Explicit. Special consideration was given to the deformation characteristics due to the normal anisotropy of the sheet material. The numerical simulations were conducted with both isotropic properties and the anisotropic properties of the initial blank material. An unexpected forming failure, barreling in the bottom region of the deep drawn rectangular cup, was observed. This failure mode can be avoided by additional ironing thickness control during the process.

Fracture Mechanics Analysis of Multi-Phase Material by Finite Eelement Method (유한요소법에 의한 다상재료의 파괴역학적 해석)

  • 표창률;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.221-228
    • /
    • 1989
  • The objective of this paper is to develop a numerical technique for analyzing crack driving forces in multi-phase materials. The analysis was based on finite element method coupled with a virtual crack extension technique which is known as the most efficient tool in computational fracture mechanics analysis. The modified J-integral method, proposed by Miyamoto and Kikuchi for the analysis of dual-phase material was carried out by subtracting the J-values for contours surrounding each phase boundary from the J-values for overall contour. It was shown that the proposed numerical procedure, based on the modified J-integral coupled with a virtual crack extension technique, can be used as an effective numerical tool for determining crack driving forces in multi-phase materials.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures (다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조)

  • Cho, Gyoung-Sun;Kim, Gyu-Mi;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.

Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application (충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.571-579
    • /
    • 2009
  • For the flow analysis of reactive compressible media involving energetic materials and metallic confinements, a Hydro-SCCM (Shock Compression of Condensed Matter) tool is developed for handling multi-physics shock analysis of energetics and inerts. The highly energetic flows give rise to the strong non-linear shock waves and the high strain rate deformation of compressible boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multi-fluid method is formulated. Mathematical formulation of explosive dynamics involving condensed matter is explained with an emphasis on validating and application of hydro-SCCM to a series of problems of high speed multimaterial dynamics in nature.

Study on Optimal Design of F-Apron of Vehicles by Multi-material Bonding (이종소재 접합을 이용한 차량 F-Apron 최적설계에 관한 연구)

  • Jung, Yoon-Soo;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.102-107
    • /
    • 2019
  • The vehicle market has developed environment-friendly vehicles to comply with fuel economy regulations and exhaust regulations that have become stricter and stricter over time. Many studies have been conducted to improve the travel performance and fuel economy of environment-friendly vehicles, and vehicle manufacturers have been studying how to manufacture light-weight vehicles in order to improve the fuel economy of both existing vehicles and the newer environment-friendly vehicles. Exemplary light-weight vehicle technologies optimizes the design of the vehicle body structure, which is a vehicle weight-reducing method that modifies component shapes or layouts to optimize the structure of the vehicle. In addition, the new process technology uses new light-weight and very strong materials, and not typical materials, to manufacture light-weight vehicles. This study aims at the optimal design of vehicle body structures using multi-materials for the Fender-Apron, which is an important frame member for the external front side of a vehicle body, by conducting FEA (Finite Element Analysis) and multi-material bonding.

Feature Extraction Technique for Insulation Fault of High Voltage Motor Stator Winding (고압전동기 고정자권선의 절연결함에 대한 특징추출기법)

  • Park Jae-Jun;Lee Sung-Young;Mun Dae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.976-983
    • /
    • 2006
  • Multi-resolution Signal Decomposition (MSD) Technique of Wavelet Transform has interesting properties of capturing the embedded horizontal, vertical and diagonal variations within an image in a separable form. This feature was exploited to identify individual partial discharge sources present in multi-source PD pattern, usually encountered during practical PD measurement. Employing the Daubechies wavelet, feature were extracted from the third level decomposed and reconstructed horizontal and vertical component images. These features were found to contain the necessary discriminating information corresponding to the individual PD sources and multi-PD soruces.

Acoustical Property Evaluation of Multi-layered Material Using the Standing Wave Method (관내법을 이용한 다층구조의 음향재료 음향성능 평가)

  • Lee, C.M.;Xu, Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.175-180
    • /
    • 2006
  • The acoustical properties of multi-layered treatments of materials used in applications, such as automotive liners, generally cannot be directly measured by a one-time test in a standing wave duct. Therefore, we have to consider predicting them by the four-pole transfer matrix method. This method requires performing TCM or TLM for measuring the transfer matrix of each layer and calculating the total transfer matrix of the whole multi-layered material. The final predicted absorption ratios and transmission losses of the multi-layered treatments strongly depend on the measured transfer matrix of each layer. All these functions have been included in a new designed acoustical software.

  • PDF