• Title/Summary/Keyword: mouse whole brain cell

Search Result 10, Processing Time 0.022 seconds

Comparison with Some Antioxidants on Hydroxyl Radical in Mouse Whole Brain Culture

  • Lee, Jeong-Chae;Lim, Kye-Taek;Lee, Ki-Seoup;Jung, Hee-young
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.541-545
    • /
    • 1998
  • This experiment carried out to compare the protective effects of some antioxidants to hydroxyl radicals in embryonic mouse whole brain tissue culture. The ICR mouse whole brain (13 embryonic day) was cultured in hydroxyl radical system in which radicals were generated by 20 mU / ml glucose oxidase (GO). In this experiment, to make ferrous iron from ferric iron, iron as an accelerator, and ascorbic acid as a reductant were used. For comparison of the protective effects to hydroxyl radicals, antioxidants such as desferrioxamine (DFX), laccase. water or ethanol extracts from Rhus Vemiciflua Stokes (RVS), and $\alpha$-tocopherol were used, because they relate to metal ion. The results of this experiment showed that all antioxidants protected effectively the cytotoxicity from hydroxyl radicals in the brain cultures. More than 70% of cell viabilities among different antioxidants was at 1 mM DFX, 1.43 $\mu\textrm{m}$ laccase, 12.5 $\mu\textrm{m}$ water extract, 12.5 $\mu\textrm{m}$ ethanol extract and 50 $\mu\textrm{m}$ $\alpha$-tocopherol individually, compared with 20 mU/ml GO alone. In comparison to the antioxidative activities of antioxidants, laccase and extracts from RVS showed strong antioxidative effects even at low concentration.

  • PDF

IDENTIFICATION OF GENES EXPRESSED IN LOW-DOSE-RATE γ-IRRADIATED MOUSE WHOLE BRAIN

  • Bong, Jin Jong;Kang, Yu Mi;Choi, Seung Jin;Kim, Dong-Kwon;Lee, Kyung Mi;Kim, Hee Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.166-171
    • /
    • 2013
  • While high-dose ionizing radiation results in long term cellular cytotoxicity, chronic low-dose (<0.2 Gy) of X- or ${\gamma}$-ray irradiation can be beneficial to living organisms by inducing radiation hormesis, stimulating immune function, and adaptive responses. During chronic low-dose-rate radiation (LDR) exposure, whole body of mice is exposed to radiation, however, it remains unclear if LDR causes changes in gene expression of the whole brain. Therefore, we aim to investigate expressed genes (EGs) and signaling pathways specifically regulated by LDR-irradiation ($^{137}Cs$, a cumulative dose of 1.7 Gy for total 100 days) in the whole brain. Using microarray analysis of whole brain RNA extracts harvested from ICR and AKR/J mice after LDR-irradiation, we discovered that two mice strains displayed distinct gene regulation patterns upon LDR-irradiation. In ICR mice, genes involved in ion transport, transition metal ion transport, and developmental cell growth were turned on while, in AKR/J mice, genes involved in sensory perception, cognition, olfactory transduction, G-protein coupled receptor pathways, inflammatory response, proteolysis, and base excision repair were found to be affected by LDR. We validated LDR-sensitive EGs by qPCR and confirmed specific upregulation of S100a7a, Olfr624, and Gm4868 genes in AKR/J mice whole brain. Therefore, our data provide the first report of genetic changes regulated by LDR in the mouse whole brain, which may affect several aspects of brain function.

Regulation of Apoptosis and Cell Cycle in Irradiated Mouse Brain (마우스의 대뇌조직에서 방사선에 의한 아포토시스와 세포주기의 조절)

  • Oh, Won-Yong;Song, Mi-Hee;Chung, Eun-Ji;Seong, Jin-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Purpose : To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. Materials and Methods : 8-week old male mice, C57B1/6J were given whole body $\gamma-radiation$ with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins Bl, Dl, E and cdk2, cdk4, $p34^{cdc2}$ were analysed by Western blotting. Cell cycle was analysed by Flow cytometry. Results : The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is $24.0{\pm}0.25$ (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-Gl, G2-M and S phase in the cell cycle does not specific changes by time. Conclusion : In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle ofter better understanding of radiation response of noraml brain tissue.

  • PDF

Age-Related Changes of Adult Neural Stem Cells in the MouseHippocampal Dentate Gyrus

  • Jung, Ji-Yeon;Byun, Kang-Ok;Jeong, Yeon-Jin;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.33 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • This study was designed to investigate the changes in the properties of the neuronal setm cells or progenitor cells associated with age-related decline in neurogenesis of the hippocampal dentate gyrus (DG). Active whole cells cycle marker Ki67 (a marker of whole cell cycle)-positive and S phase marker bromodeoxyuridine (BrdU)-positive. Neural stem cells gradually were reduced in the hippocampal subgranular zone (SGZ) in an age-dependant manner after birth (from P1 month to P1 year). The ratio of BrdUpositivecells/Ki67-positive cells was gradually enhanced in an age-dependent manner. The ratio of Ki67-positive cells/accu-mulating BrdU-positive cells at 3 hrs after BrdU injection was injected once a day for consecutive 5 days gradually decreased during ageing. TUNEL- and caspase 3 (apoptotic terminal caspase)-positive cells gradually decreased in the dentate SGZ during ageing and immunohistochemical findings of glial fibrillary acid protein (GFAP) were not changed during ageing. NeuN, a marker of mature neural cells, and BrdU-double positive cells gradually decreased in an age-dependent manner but differentiating ratio and survival rate of cells were not changed at 4 wks after BrdU injection once a day for consecutive 5 days. The number of BrdU-positive cells migrated from the hippocampal SGZ into granular layer and its migration speed was gradually declined during ageing. These results suggest that the adult neurogenesis in the mouse hippocampal DG gradually decrease through reducing proliferation of neural stem cells accompanying with cells cycle change and reduced cells migration rather than changes of differentiation.

Effects of Gintonin-enriched fraction on the gene expression of six lysophosphatidic receptor subtypes

  • Lee, Rami;Lee, Byung-Hwan;Choi, Sun-Hye;Cho, Yeon-Jin;Cho, Han-Sung;Kim, Hyoung-Chun;Rhim, Hyewhon;Cho, Ik-Hyun;Rhee, Man Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.583-590
    • /
    • 2021
  • Background: Gintonin, isolated from ginseng, acts as a ginseng-derived lysophosphatidic acid (LPA) receptor ligand and elicits the [Ca2+]i transient through six LPA receptor subtypes (LPARSs). However, the long-term effects of gintonin-enriched fraction (GEF) on the gene expression of six LPARSs remain unknown. We examined changes in the gene expression of six LPA receptors in the mouse whole brain, heart, lungs, liver, kidneys, spleen, small intestine, colon, and testis after long-term oral GEF administration. Methods: C57BL/6 mice were divided into two groups: control vehicle and GEF (100 mg/kg, p.o.). After 21-day saline or GEF treatment, total RNA was extracted from nine mouse organs. Quantitative-real-time PCR (qRT-PCR) and western blot were performed to quantify changes in the gene and protein expression of the six LPARSs, respectively. Results: qRT-PCR analysis before GEF treatment revealed that the LPA6 RS was predominant in all organs except the small intestine. The LPA2 RS was most abundant in the small intestine. Long-term GEF administration differentially regulated the six LPARSs. Upon GEF treatment, the LPA6 RS significantly increased in the liver, small intestine, colon, and testis but decreased in the whole brain, heart, lungs, and kidneys. Western blot analysis of the LPA6 RS confirmed the differential effects of GEF on LPA6 receptor protein levels in the whole brain, liver, small intestine, and testis. Conclusion: The LPA6 receptor was predominantly expressed in all nine organs examined; long-term oral GEF administration differentially regulated LPA3, LPA4, and LPA6 receptors in the whole brain, heart, lungs, liver, kidneys, small intestine, and testis.

Cytosolic domain regulates the calcium sensitivity and surface expression of BEST1 channels in the HEK293 cells

  • Kwon Woo Kim;Junmo Hwang;Dong-Hyun Kim;Hyungju Park;Hyun-Ho Lim
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • BEST family is a class of Ca2+-activated Cl- channels evolutionary well conserved from bacteria to human. The human BEST paralogs (BEST1-BEST4) share significant amino acid sequence homology in the N-terminal region, which forms the transmembrane helicases and contains the direct calcium-binding site, Ca2+-clasp. But the cytosolic C-terminal region is less conserved in the paralogs. Interestingly, this domain-specific sequence conservation is also found in the BEST1 orthologs. However, the functional role of the C-terminal region in the BEST channels is still poorly understood. Thus, we aimed to understand the functional role of the C-terminal region in the human and mouse BEST1 channels by using electrophysiological recordings. We found that the calcium-dependent activation of BEST1 channels can be modulated by the C-terminal region. The C-terminal deletion hBEST1 reduced the Ca2+-dependent current activation and the hBEST1-mBEST1 chimera showed a significantly reduced calcium sensitivity to hBEST1 in the HEK293 cells. And the C-terminal domain could regulate cellular expression and plasma membrane targeting of BEST1 channels. Our results can provide a basis for understanding the C-terminal roles in the structure-function of BEST family proteins.

Antioxidative Effects of Ethanol Extracts from Rhus Verniciflua Stokes (RVS) on Mouse Whole Brain Cells (옻나무 에탄올 추출물의 쥐 뇌세포에 대한 항산화효과)

  • Lim, Kye-Taek;Shim, Jae-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1248-1254
    • /
    • 1997
  • To measure antioxidative activities, the various extracts from RVS (Rhus Verniciflua Stokes) were tried out with either DPPH or thiocyanate method. Also we used the GO (Glucose Oxidase) 20 mU/mL hydroxyl radical system in mouse whole brain cell culture. Chloroform, n-hexane or ethanol were used as extract solutions which had different polarity respectively. In DPPH and thiocyanate method, the antioxidative activities of the crude ethanol extracts were stronger than other extracts. The crude ethanol extracts were fractionated 5 peaks by glass column. Among of them, antioxidative activity of peak II $(P_{II})$ was shown stronger than other fractions, a little for peak III $(P_{III})$ and peak IV $(P_{IV})$, and none for peak I $(P_I)$ and Peak V $(P_V)$. In the antioxidative effects of crude ethanol extracts (30 mg/mL), cell viabilities were evaluated $1\;{\mu}L\;(297\;{\mu}g/mL)$, $2\;{\mu}L\;(588\;{\mu}g/mL)$ of crude ethanol extracts 59%, 68% respectively. $10\;{\mu}L\;(2,727\;{\mu}g/mL)$ addition of crude ethanol extracts had 95% cell viabilities, 0.01% significant, comparing control. In addition, the compounds related to antioxidative effect of crude ethanol extract might be glycoproteins by means of SDS-PAGE. Comparison to antioxidative effects between several antioxidants (ascorbic acid, ${\alpha}-tocopherol$, catalase) $273\;{\mu}L/mL$ addition of crude ethanol extracts corresponds to $1\;{\mu}g/mL$ catalase in antioxidative effects.

  • PDF

Antioxidant and Neuronal Cell Protective Effects of Columbia Arabica Coffee with Different Roasting Conditions

  • Jeong, Ji Hee;Jeong, Hee Rok;Jo, Yu Na;Kim, Hyun Ju;Lee, Uk;Heo, Ho Jin
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • In vitro antioxidant activities and neuronal cell protective effects of ethanol extract from roasted coffee beans were investigated. Colombia arabica coffee (Coffea arabica) green beans were roasted to give medium ($230^{\circ}C$, 10 min), city ($230^{\circ}C$, 12 min) and french ($230^{\circ}C$, 15 min) coffee beans. Total phenolics in raw green beans, medium, city and french-roasted beans were $8.81{\pm}0.05$, $9.77{\pm}0.03$, $9.92{\pm}0.04$ and $7.76{\pm}0.01$ mg of GAE/g, respectively. The content of 5-O-caffeoylquinic acid, the predominant phenolic, was detected higher in medium-roasted beans than others. In addition, we found that extracts from medium-roasted beans particularly showed the highest in vitro antioxidant activity on ABTS radical scavenging activity and FRAP assays. To determine cell viability using the MTT assay, extracts from medium- roasted beans showed higher protection against $H_2O_2$-induced neurotoxicity than others. Lactate dehydrogenase (LDH) leakage was also inhibited by the extracts due to prevention of lipid peroxidation using the malondialdehyde (MDA) assay from mouse whole brain homogenates. These data suggest that the medium-roasting condition to making tasty coffee from Columbia arabica green beans may be more helpful to human health by providing the most physiological phenolics, including 5-O-caffeoylquinic acids.

Feasibility of Reflecting Improvement of Tumor Hypoxia by Mild Hyperthermia in Experimental Mouse Tumors with $^18F-Fluoromisonidazole$ (저온온열치료에 의한 종양 내 저산소상태 개선효과를 $^18F$-Fluoromisonidazole의 섭취 변화를 이용한 평가)

  • Lee Sang-wook;Ryu Jin Sook;Oh Seung Joon;Im Ki Chun;Chen Gi Jeong;Lee So Ryung;Song Do Young;Im Soo Jeong;Moon Eun Sook;Kim Jong Hoon;Ahn Seung Do;Shin Seong Soo;Lee Kyeong Ryong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.288-297
    • /
    • 2004
  • Puporse: The aims of this study were to evaluate the change of $[^18F]fluoromisonidazole$($[^18F]FMISO$) uptake in C3H mouse squamous cell carcinoma-VII (SCC-VII) treated with mild hyperthermia ($42^{circ}C$) and nicotinamide and to assess the biodistribution of the markers in normal tissues under similar conditions. Methods and Materials: $[^18F]FMISO$ was producedby our hospital. Female C3H mice with a C3H SCC-VII tumor grown on their extremities were used. Tumors were size matched. Non-anaesthetized, tumor-bearing mice underwent control or mild hyperthermia at $42^{circ}C$ for 60 min with nicotinamide (50 mg/kg i.p. injected) and were examined by gamma counter, autoradiography and animal PET scan 3 hours after tracer i.v. injected with breathing room air, The biodistribution of these agents were obtained at 3 h after $[^18F]FMISO$ injection. Blood, tumor, muscle, heart, lung, liver, kidney, brain, bone, spleen, and intestine were removed, counted for radioactivity and weighed. The tumor and liver were frozen and cut with a cryomicrotome into 10- um sections. The spatial distribution of radioactivity from the tissue sections was determined with digital autoradiography. Results: The mild hyperthermia with nicotinamide treatment had only slight effects on the biodistribution of either marker in normal tissues. We observed that the whole tumor radioactivity uptake ratios were higher in the control mice than in the mild hyperthermia with nicotinamide treated mice for $[^18F]FMISO$ ($1.56{\pm}1.03$ vs. $0.67{\pm}0.30$; p=0.063). In addition, autoradiography and animal PET scan demonstrated that the area and intensity of $[^18F]FMISO$ uptake was significantly decreased. Conclusion: Mild hyperthermla and nicotinamide significantly improved tumor hypoxia using $[^18F]FMISO$ and this uptake reflected tumor hypoxic status.

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells (F9 EC 세포에서 레티노산에 의해 유도되는 Hoxc 유전자의 발현에 히스톤 메틸화가 미치는 영향)

  • Min, Hyehyun;Kim, Myoung Hee
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.703-708
    • /
    • 2015
  • Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.