Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.6.703

Histone Methylation Regulates Retinoic Acid-induced Hoxc Gene Expression in F9 EC Cells  

Min, Hyehyun (Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus project for Medical Science, Yonsei University College of Medicine)
Kim, Myoung Hee (Department of Anatomy, Embryology Laboratory, Brain Korea 21 Plus project for Medical Science, Yonsei University College of Medicine)
Publication Information
Journal of Life Science / v.25, no.6, 2015 , pp. 703-708 More about this Journal
Abstract
Hox genes encode a highly conserved family of homeodomain-containing transcription factors controlling vertebrate pattern formation along the anteroposterior body axis during embryogenesis. Retinoic acid (RA) is a key morphogen in embryogenesis and a critical regulator of both adult and embryonic cellular activity. Specifically, RA regulates Hox gene expression in mouse- or human-derived embryonic carcinoma (EC) cells. Histone modification has been reported to play a pivotal role in the process of RA-induced gene expression and cell differentiation. As histone modification is thought to play an essential role in RA-induced Hox gene expression, we examined RA-induced initiation of collinear expression of Hox genes and the corresponding histone modifications in F9 murine embryonic teratocarcinoma (EC) cells. Hox expression patterns and histone modifications were analyzed by semiquantitative RT-PCR, RNA-sequencing, and chromatin immuno-precipitation (ChIP)-PCR analyses. The Hoxc4 gene (D0) was initiated earlier than the Hoxc5 to –c10 genes (D3) upon RA treatment (day 0 [D0], day 1 [D1], and day 3 [D3]). The Hox nonexpressing D0 sample had a strong repressive marker, H3K27me3, than the D1 and D3 samples. In the D1 and D3 samples, reduced enrichment of the H3K27me3 marker was observed in the whole cluster. The active H3K4me3 marker was closely associated with the collinear expression of Hoxc genes. Thus, the Hoxc4 gene (D1) and all Hoxc genes (D3) expressed H3K4me3 upon transcription activation. In conclusion, these data indicated that removing H3K27me3 and acquiring H3K4me3 regulated RA-induced Hoxc gene collinearity in F9 cells.
Keywords
F9 EC cells; histone modification; Hoxc cluster; RA; retinoic acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pearson, J. C., Lemons, D. and McGinnis, W. 2005. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 893-904.   DOI
2 McGinnis, W. and Krumlauf, R. 1992. Homeobox genes and axial patterning. Cell 68, 283-302.   DOI
3 Min, H., Lee, J. Y. and Kim, M. H. 2012. Structural dynamics and epigenetic modifications of Hoxc loci along the anteroposterior body axis in developing mouse embryos. Int. J. Biol. Sci. 8, 802-810.   DOI
4 Partanen, J., Schwartz, L. and Rossant, J. 1998. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev. 12, 2332-2344.   DOI
5 Simeone, A., Acampora, D., Arcioni, L., Andrews, P. W., Boncinelli, E. and Mavilio, F. 1990. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346, 763-766.   DOI
6 Soshnikova, N. and Duboule, D. 2008. Epigenetic regulation of Hox gene activation: the waltz of methyls. Bioessays 30, 199-202.   DOI
7 Favier, B. and Dolle, P. 1997. Developmental functions of mammalian Hox genes. Mol. Hum. Reprod. 3, 115-131.   DOI
8 Flagiello, D, Gibaud A, Dutrillaux, B, Poupon, M. F. and Malfoy, B. 1997. Distinct patterns of all-trans retinoic acid dependent expression of HOXB and HOXC homeogenes in human embryonal and small-cell lung carcinoma cell lines. FEBS Lett. 415, 263-267.   DOI
9 Gillespie, R. F. and Gudas, L. J. 2007. Retinoid regulated association of transcriptional co-regulators and the poly-comb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta (2), and Cyp26A1 in F9 embryonal carcinoma cells. J. Mol. Biol. 372, 298-316.   DOI
10 Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128, 693-705.   DOI
11 Kashyap, V., Gudas, L. J., Brenet, F., Funk, P., Viale, A. and Scandura, J. M. 2011. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J. Biol. Chem. 286, 3250-3260.   DOI
12 Kashyap, V., Laursen, K. B., Brenet, F., Viale, A. J., Scandura, J. M. and Gudas, L. J. 2013. RARgamma is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J. Cell Sci. 126, 999-1008.   DOI
13 Kong, K. A., Lee, J. Y., Oh, J. H., Lee, Y. and Kim, M. H. 2014. Akt1 mediates the posterior Hoxc gene expression through epigenetic modifications in mouse embryonic fibroblasts. Biochim. Biophys. Acta 1839, 793-799.   DOI
14 Krumlauf, R. 1992. Evolution of the vertebrate Hox homeobox genes. Bioessays 14, 245-252.   DOI
15 Laursen, K. B., Wong, P. M. and Gudas, L. J. 2012. Epigenetic regulation by RARalpha maintains ligand-independent transcriptional activity. Nucleic Acids Res. 40, 102-115.   DOI
16 Stornaiuolo, A., Acampora, D., Pannese, M., D’Esposito, M., Morelli, F., Migliaccio, E., Rambaldi, M., Faiella, A., Nigro, V., Simeone, A. and et al. 1990. Human HOX genes are differentially activated by retinoic acid in embryonal carcinoma cells according to their position within the four loci. Cell Differ. Dev. 31, 119-127.   DOI
17 Boncinelli, E., Simeone, A., Acampora, D. and Mavilio, F. 1991. HOX gene activation by retinoic acid. Trends Genet. 7, 329-334.   DOI
18 Soshnikova, N. and Duboule, D. 2009. Epigenetic temporal control of mouse Hox genes in vivo. Science 324, 1320-1323.   DOI
19 Soshnikova, N. and Duboule, D. 2009. Epigenetic regulation of vertebrate Hox genes: a dynamic equilibrium. Epigenetics 4, 537-540.   DOI
20 Soprano, D. R., Teets, B. W. and Soprano, K. J. 2007. Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. Vitam. Horm. 75, 69-95.   DOI
21 Strahl, B. D. and Allis, C. D. 2000. The language of covalent histone modifications. Nature 403, 41-45.   DOI
22 Young, T. and Deschamps, J. 2009. Hox, Cdx, and anteroposterior patterning in the mouse embryo. Curr. Top. Dev. Biol. 88, 235-255.   DOI
23 Lee, E. R., Murdoch, F. E. and Fritsch, M. K. 2007. High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells 25, 2191-2199.   DOI
24 Lee, J. Y., Min, H., Wang, X., Khan, A. A. and Kim, M. H. 2010. Chromatin organization and transcriptional activation of Hox genes. Anat. Cell. Biol. 43, 78-85.   DOI
25 Lee, Y., Lee, J. Y. and Kim, M. H. 2014. PI3K/Akt pathway regulates retinoic acid-induced Hox gene expression in F9 cells. Dev. Growth. Differ. 56, 518-525.   DOI