Feasibility of Reflecting Improvement of Tumor Hypoxia by Mild Hyperthermia in Experimental Mouse Tumors with $^18F-Fluoromisonidazole$

저온온열치료에 의한 종양 내 저산소상태 개선효과를 $^18F$-Fluoromisonidazole의 섭취 변화를 이용한 평가

  • Lee Sang-wook (Departments of Radiation Oncology,Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Ryu Jin Sook (Departments of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Oh Seung Joon (Departments of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Im Ki Chun (Departments of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Chen Gi Jeong (Departments of Nuclear Medicine, korea Institute of Radiological and Medical Sciences) ;
  • Lee So Ryung (Departments of Radiation Oncology,Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Song Do Young (Departments of Radiation Oncology,Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Im Soo Jeong (Departments of Nuclear Medicine, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Moon Eun Sook (Departments of Radiation Oncology,Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Kim Jong Hoon (Departments of Radiation Oncology, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Ahn Seung Do (Departments of Radiation Oncology,Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Shin Seong Soo (Departments of Radiation Oncology,Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Lee Kyeong Ryong (Department of Emergency Medical, Konkuk University)
  • 이상욱 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 류진숙 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 오승준 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 임기천 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 천기정 (원자력병원 핵의학과, 방사선의학연구센터) ;
  • 이소령 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 송도영 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 임수정 (울산대학교 의과대학 서울아산병원 핵의학과) ;
  • 문은숙 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 김종훈 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 안승도 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 신성수 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 이경룡 (건국대학교병원 응급의학과)
  • Published : 2004.12.01

Abstract

Puporse: The aims of this study were to evaluate the change of $[^18F]fluoromisonidazole$($[^18F]FMISO$) uptake in C3H mouse squamous cell carcinoma-VII (SCC-VII) treated with mild hyperthermia ($42^{circ}C$) and nicotinamide and to assess the biodistribution of the markers in normal tissues under similar conditions. Methods and Materials: $[^18F]FMISO$ was producedby our hospital. Female C3H mice with a C3H SCC-VII tumor grown on their extremities were used. Tumors were size matched. Non-anaesthetized, tumor-bearing mice underwent control or mild hyperthermia at $42^{circ}C$ for 60 min with nicotinamide (50 mg/kg i.p. injected) and were examined by gamma counter, autoradiography and animal PET scan 3 hours after tracer i.v. injected with breathing room air, The biodistribution of these agents were obtained at 3 h after $[^18F]FMISO$ injection. Blood, tumor, muscle, heart, lung, liver, kidney, brain, bone, spleen, and intestine were removed, counted for radioactivity and weighed. The tumor and liver were frozen and cut with a cryomicrotome into 10- um sections. The spatial distribution of radioactivity from the tissue sections was determined with digital autoradiography. Results: The mild hyperthermia with nicotinamide treatment had only slight effects on the biodistribution of either marker in normal tissues. We observed that the whole tumor radioactivity uptake ratios were higher in the control mice than in the mild hyperthermia with nicotinamide treated mice for $[^18F]FMISO$ ($1.56{\pm}1.03$ vs. $0.67{\pm}0.30$; p=0.063). In addition, autoradiography and animal PET scan demonstrated that the area and intensity of $[^18F]FMISO$ uptake was significantly decreased. Conclusion: Mild hyperthermla and nicotinamide significantly improved tumor hypoxia using $[^18F]FMISO$ and this uptake reflected tumor hypoxic status.

목적: 종양 내에서 산소공급 부족현상으로 발생하는 저산소증 조직에서 저온온열치료($42^{circ}C$)와 nicotinamide에 의한 perfusion limited 저산소증의 개선 효과를 마우스 종양 모델을 이용하여 종양 내 $[^18F]FMISO$ 섭취변화를 이용하여 증명할 수 있는지 알아보고자 하였다. 대상 및 방법: C3H 마우스에 $[^18F]FMISO$를 정주하고 11개 장기에서 $\%ID/g$을 구하여 biodistribution을 관찰하였다. 또한 같은 마우스에 동종 종양세포인 SCC7을 이식하여 종양모델을 만들고 저온온열치료($42^{circ}C$)와 nico-tinamide를 투여한 마우스와 대조군 마우스에서 $[^18F]FMISO$의 섭취정도 차이를 $\%ID/g$, autoradiography, PET scan을 시행하여 비교하고자 하였다. 결과: 대조군에서 종양의 FMISO의 섭취는 5.1+/-2.28 $\%ID/g$였고, 종양/근육, 종양/혈액의 섭취비는 2.2와 1.8이었다. 실험군에서는 각각 2.4+/-0.64 $\%ID/g$, 1.4와 1.2를 나타내어 대조군보다 유의하게 낮았다(p<0.021). Autoradiography에서 대조군의 종양 내부에 FMISO가 섭취됨을 확인하였고, 저온온열치료와 nico-tinamide를 투여한 실험군에서는 섭취가 감소된 것을 관찰하였다. 결론: C3H 마우스와 동종 종양세포인 SCC-VII을 이용한 종양모델에서 $[^18F]FMISO$가 종양내에 섭취가 되어 자산소증 종양모델로 적절함을 확인하였고, 저온온열치료($42^{circ}C$)와 nicotinamide에 의한 perfusion limited 저산소증 개선효과를 $[^18F]FMISO$의 종양 내 섭취가 감소하는 것을 통하여 확인할 수 있었다.

Keywords

References

  1. Moulder JE, Rockwell S. Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys 1984;10:695-712 https://doi.org/10.1016/0360-3016(84)90301-8
  2. Grau C, Horsman MR, Overgaard J. Improving the radiationresponse in a C3H mouse mammary carcinoma by normo-baric oxygen or carbogen breathing. Int J Radiat Oncol Biol Phys 1992;22:415-419 https://doi.org/10.1016/0360-3016(92)90844-8
  3. Grau C, Horsman MR, Overgaard J. Influence of carboxyhemoglobin level on tumor growth, blood flow, and radiation response in an experimental model. Int J Radiat Oncol Biol Phys 1992;22:421-424 https://doi.org/10.1016/0360-3016(92)90845-9
  4. Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Sem Radiat Oncol 1996;6:10-21 https://doi.org/10.1016/S1053-4296(96)80032-4
  5. Brown MJ. The hypoxic cell: a target for selective cancer therapy. Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 1999;59:5863-5870
  6. Chaplin DJ, Horsman MR, Trotter MJ, Siemann DW. Therapeutic significance of microenvironmental factors. In: Molls M, Vaupel P, eds. Medical radiobiology: blood perfusion and microenvironment of human tumours. Heidelberg Berlin New York: Springer. 1998:133-143
  7. Hockel M, Schlenger K, Knoop C, Vaupel P. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurments. Cancer Res 1991;51: 6098-6102
  8. Vaupel P, Schlenger K, Knoop C, Hockel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 1991;51:3316-3322
  9. Gray LH, Conger AD, Ebert M, et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638-648 https://doi.org/10.1259/0007-1285-26-312-638
  10. Fairbairn DW, Olive PC, O'Neill KL. The comet assay: A comprehensive review. Mutat Res 1995;339:37-59 https://doi.org/10.1016/0165-1110(94)00013-3
  11. Olive PL, Horsman MR, Grau C, et al. Detection of hypoxic cells in a C3H mouse mammary carcinoma using the comet assay. Br J Cancer 1997;76:694-699 https://doi.org/10.1038/bjc.1997.448
  12. Sutherland RM. Tumor hypoxia and gene expression: implications for malignant progression and therapy. Acta Oncol 1998;37:567-574 https://doi.org/10.1080/028418698430278
  13. Sutherland RM, Ausserer WA, Murphy BJ, Laderoute KR. Tumour hypoxia and heterogeneity: challenges and opportunities for the future. Semin Radit Oncol 1996;6:59-70 https://doi.org/10.1016/S1053-4296(96)80036-1
  14. Giaccia AJ. Hypoxic stress proteins: survival of the fittest. Semin Radit Oncol 1996;6:46-58 https://doi.org/10.1016/S1053-4296(96)80035-X
  15. Kolstad P. Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest 1968;106(Suppl):145-157
  16. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996;379:88-91 https://doi.org/10.1038/379088a0
  17. Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 2000;57:39-43 https://doi.org/10.1016/S0167-8140(00)00223-1
  18. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev 1994;13:139-168 https://doi.org/10.1007/BF00689633
  19. Adam M, Gabalski EC, Bloch DA, et al. Tissue oxygen distribution in head and neck cancer patients. Head Neck 1999;21:146-153 https://doi.org/10.1002/(SICI)1097-0347(199903)21:2<146::AID-HED8>3.0.CO;2-U
  20. Rasey JS, Koh WJ, Evans ML, et al. Quantifying regional hypoxia in human tumors with positron emmision tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Biol Phys 1996;36:417-428 https://doi.org/10.1080/09553007914551201
  21. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1997;38:285-289 https://doi.org/10.1016/S0360-3016(97)00101-6
  22. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996;41:31-39
  23. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996:56:4509-4515
  24. Nordsmark M, Aisner J, Keller J, et al. Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 2001;84:1070-1075 https://doi.org/10.1054/bjoc.2001.1728
  25. Khalil AA, Horsman MR, Overgaard J. The importance of determining necrotic fraction when studying the effect of tumour volume on tissue oxygenation. Acta Oncol 1995;34:297-300 https://doi.org/10.3109/02841869509093978
  26. Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 2000;57:39-43 https://doi.org/10.1016/S0167-8140(00)00223-1
  27. Fyles A, Milosevic M, Hedley D, et al. Tumor hypoxia has independent predictor impact only in patients with nodenegative cervix cancer. J Clin Oncol 2002;20:680-687 https://doi.org/10.1200/JCO.20.3.680
  28. Brizel DN, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941-943
  29. Hockel M, Knoop C, Schlenger K, et al. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 1993;26:45-50 https://doi.org/10.1016/0167-8140(93)90025-4
  30. Gatenby RA, Kessler HB, Rosenblaum JS, et al. Oxygen distribution in squamous cell carcinoma metastasis and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 1998;14:831-838
  31. Nordsmark M, Loncaster J, Chou SC, et al. Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys 2001;49:581-586 https://doi.org/10.1016/S0360-3016(00)01493-0
  32. Iyer RV, Haynes PT, Schneider RF, Movas B, Chapman JD. Marking hypoxia in rat prostate carcinomas with $\beta$-D-[$^125$l] azomycin galactopyranoside and [99mTc]HL-91: correlation with microelectrode measurements. J Nucl Med 2001;42:337-344
  33. Brown JM. Evidence for acutely hypoxic cells in mouse tumours and a possible mechanism of reoxygenation. Br J Radiol 1979;52:650-656 https://doi.org/10.1259/0007-1285-52-620-650
  34. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539-549 https://doi.org/10.1038/bjc.1955.55
  35. Denekamp J, Dasu A. Inducible repair and the two forms of tumour hypoxia: time for a paradigm shift. Acta Oncol 1999;38:903-918 https://doi.org/10.1080/028418699432590
  36. Evans SM, Hahn SM, Magarelli DP, Koch CJ. Hypoxic heterogeneity in human tumors: EF5 binding, vasculature, necrosis, and proliferation. Am J Clin Oncol 2001;24:467-472 https://doi.org/10.1097/00000421-200110000-00011
  37. Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol 1998;46:229-237 https://doi.org/10.1016/S0167-8140(97)00186-2
  38. Varghese AJ, Gulyas S, Mohindra JK. Hypoxia-dependent reduction of 1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo. Cancer Res 1976;36:3761-3765
  39. Chapman JD. Hypoxic sensitizers-implications for radiation therapy. N Engl J Med 1979;301:1429-1432 https://doi.org/10.1056/NEJM197912273012606
  40. Franko AJ, Chapman JD. Binding of 14C-misonidazole to hypoxic cells in V79 spheroids. Br J Cancer 1982;45:694-699 https://doi.org/10.1038/bjc.1982.110
  41. Raleigh JA, Franko AJ, Koch CJ, Born JL. Binding of misonidazole to hypoxic cells in monolayer and spheroid culture: evidence that a side-chain label is bound as efficiently as a ring label. Br J Cancer 1985;51:229-235 https://doi.org/10.1038/bjc.1985.33
  42. Chapman JD, Franko AJ, Sharplin J. A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 1981;43:546-550 https://doi.org/10.1038/bjc.1981.79
  43. Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med 1987;28:68-75
  44. Hirst DG, Hazlehurst JL, Brown JM. Changes in misoni dazole binding with hypoxic fraction in mouse tumors. Int J Radit Oncol Biol Phys 1985;11:1349-1355 https://doi.org/10.1016/0360-3016(85)90251-2
  45. Rasey JS, Grunbaum Z, Magee S, et al. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 1987;111:292-304 https://doi.org/10.2307/3576986
  46. Rasey JS, Nelson NJ, Chin L, Evans ML, Grunbaum Z. Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res 1990;122:301-308 https://doi.org/10.2307/3577760
  47. Piert M, Machulla H, Becker G, et al. Introducing fluorine-18 fluoromisonidazole positron emission tomography for the localisation and quantification of pig liver hypoxia. Eur J Nucl Med 1999;26:95-109 https://doi.org/10.1007/s002590050365
  48. Bentzen L, Keiding S, Horsman MR, Falborg L, Hansen SB, Overgaard J. Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography - a study evaluating [18F]Fluoro-2-deoxy-glucose. Acta Oncol 2000;39:629-637 https://doi.org/10.1080/028418600750013320
  49. Rasey J, Koh WJ, Grierson JR, Grunbaum Z, Krohn KA. Radiolabeled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiation Oncology Biol Phys 1989;17:985-991 https://doi.org/10.1016/0360-3016(89)90146-6
  50. Kubota K, Tada M, Yamada S, et al. Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue. Eur J Nucl Med 1999;26:750-757 https://doi.org/10.1007/s002590050446
  51. Rasey J, Casciari JJ, Hofstrand PD, Muzi M, Graham MM, Chin LK. Determining hypoxic fraction in a rat glioma by uptake of radiolabeled fluoromisonidazole. Radiat Res 2000;153:84-92 https://doi.org/10.1667/0033-7587(2000)153[0084:DHFIAR]2.0.CO;2
  52. Bentzen L, Keiding S, Horsman MR, Falborg L, Hansen SB, Overgaard J. Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography; a study evaluating [18F]fluoromisonidazole and [18F]fluoro-2-deoxyglucose. Acta Oncol 2000;39:629-637 https://doi.org/10.1080/028418600750013320
  53. Tochon-Danguy HJ, Sachinidis JI, Chan F, et al. Imaging and quantitation of the hypoxic cell fraction of viable tumor in an animal model of intracerebral high grade glioma using [18F]fluoromisonidazole (FMISO). Nucl Med Biol 2002;29:191-197 https://doi.org/10.1016/S0969-8051(01)00298-0
  54. Bentzen L, Keiding S, Horsman MR, Gronroos T, Hansen SB, Overgaard J. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements: influence of tumour volume and carbogen breathing. Acta Oncol 2002;41:304-312 https://doi.org/10.1080/02841860260088863
  55. Hirano T, Read SJ, Abbott DF, et al. No evidence of hypoxic tissue surrounding an intracerebral haemorrhage using PET and 18F-fluoromisonidazole. Neurology 1999;53: 2179-2182 https://doi.org/10.1212/WNL.53.9.2179
  56. Read SJ, Hirano T, Abbott DF, et al. Identifying hypoxic tissue after ischemic stroke using PET and 18F-fluoromisonidazole. Neurology 1998;51:6117-6121
  57. Read SJ, Hirano T, Abbott DF, et al. The fate of hypoxic tissue on 18F-fluoromisonidazole PET after ischemic stroke. Ann Neurol 2000;48:228-235 https://doi.org/10.1002/1531-8249(200008)48:2<228::AID-ANA13>3.0.CO;2-B
  58. Koh WJ, Rasey JS, Evans ML, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 1992;22:199-212 https://doi.org/10.1016/0360-3016(92)91001-4
  59. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 1992;33:2133-2137
  60. Yeh SH, Liu RS, Wu LC, et al. Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med 1996;3:1378-1383
  61. Rajendran JG, Wilson DC, Conrad EU, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 2003;30:695-704 https://doi.org/10.1007/s00259-002-1096-7
  62. Bentzen L, Keiding S, Nordsmark M, et al. Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 2003;67:339-344 https://doi.org/10.1016/S0167-8140(03)00081-1
  63. Vujaskovic Z, Poulson JM, Gaskin AA, et al. Temperature- dependent changes in physiologic parameters of spontaneous canine soft tissue sarcomas after combined radiotherapy and hyperthermia treatment. Int J Radiat Oncol Biol Phys 2000;46:179-185 https://doi.org/10.1016/S0360-3016(99)00362-4
  64. Song CW, Shakil A, Osborn JL, Iwata K. Tumour oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperthermia 1996;12:367-373 https://doi.org/10.3109/02656739609022525
  65. Okajima K, Griffin RJ, Iwata K, Shakil A, Song CW. Tumor oxygenation after mild-temperature hyperthermia in combination with carbogen breathing: Dependence on heat dose and tumor type. Radiat Res 1998;149:294-299 https://doi.org/10.2307/3579963
  66. Ogawa A, Griffin RJ, Song CW. Effect of a combination of mild-temperature hyperthermia and nicotinamide on the radiation response of experimental tumors. Radiat Res 2000;153:327-331 https://doi.org/10.1667/0033-7587(2000)153[0327:EOACOM]2.0.CO;2
  67. Griffin RJ, Okajima K, Barrios B, Song CW. Mild temperature hyperthermia combined with carbogen breathing increases tumor partial pressure of oxygen (pO2) and radiosensitivity. Cancer Res 1996;56:5590-5593
  68. Horsman MR. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. a review. Acta Oncol 1995;34:571-587 https://doi.org/10.3109/02841869509094031
  69. Horsman MR, Chaplin DJ, Brown JM. Radiosensitization by nicotinamide in vivo: a greater enhancement of tumor damage compared to that of normal tissues. Radiat Res 1987;109:479-489 https://doi.org/10.2307/3577048
  70. Lee I, Song CW. The oxygenation of murine tumor isografts and human tumor xenografts by nicotinamide. Radiat Res 1992;130:65-71 https://doi.org/10.2307/3578481
  71. Siemann DW, Horsmann MR, Chaplin DJ. The radiation response of KHT sarcomas following nicotinamide treatment and carbogen breathing. Radiother Oncol 1994;31:117-122 https://doi.org/10.1016/0167-8140(94)90391-3
  72. Lee I, Song CW. The oxygenation of murine tumor isografts and human tumor xenografts by nicotinamide. Radiat Res 1992;130:65-71 https://doi.org/10.2307/3578481
  73. Chapman JD. The detection and measurement of hypoxic cells in solid tumors. Cancer 1984;54:2441-2449 https://doi.org/10.1002/1097-0142(19841201)54:11<2441::AID-CNCR2820541122>3.0.CO;2-S
  74. Wiebe LI, Machulla HJ. Hypoxia: an introduction. In: Machulla HJ, eds. Imaging of hypoxia-tracer developments. Dordrecht/Boston/London: Kluwer Academic Publishers. 1999:1-18
  75. Dachs GU, Chaplin DJ. Microenvironmental control of gene expression: implications for tumor angiogenesis, progression, and metastasis. Sem Radiat Oncol 1998;8:208-216 https://doi.org/10.1016/S1053-4296(98)80046-5
  76. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509-4515
  77. Kallinowski F, Zander R, Hoeckel M, Vaupel P. Tumor tissue oxygenation as evaluated by computerized-pO2-Histography. Int J Radiation Oncology Biol Phys 1990;19:953-961 https://doi.org/10.1016/0360-3016(90)90018-F
  78. Kavanagh MC, Sun A, Hu Q, Hill RP. Comparing techniques of measuring tumor hypoxia in different murine tumors: Eppendorf pO2 histograph, [3H]misonidazole binding and paired survival assay. Radiation Research 1996;145:491-500 https://doi.org/10.2307/3579071
  79. Nordsmark M, Overgaard J. Oxygenation of human tumors: the Aarhus experience. In: P. Vaupel, D.K. Kelleher eds. Tumor hypoxia-pathophysiology, clinical significance and therapeutic perspectives, Wissenschaftliche Verlagsgesellschaft mbH Stuttgart: Stuttgart, 1999,19-27
  80. Urtasun RC, Chapman JD, Raleigh JA, Franko AJ, Koch CJ. Binding of 3H-misonidazole to solid human tumorsas a measure of tumor hypoxia. Int J Radit Oncol Biol Phys 1986;12:1263-1267 https://doi.org/10.1016/0360-3016(86)90273-7
  81. Cook GJR, Houston S, Barrington SF, Fogelman I. Technetium-99m-labeled HL91 to Identify tumor hypoxia, correlation with Fluorine-18-FDG. J Nucl Med 1998;39:99-103
  82. Groshar D, McEwan AJB, Parliament MB, et al. Imaging tumor hypoxia and tumor perfusion. J Nucl Med 1993;34: 885-888
  83. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:266-280
  84. Urtasun RC, Parliament MB, McEwan AJ, et al. Measurement of hypoxia in human tumours by non-invasive SPECT imaging of iodoazomycin arabinoside. Br J Cancer 1996;74:209-212
  85. Grierson JR, Link JM, Mathis CA, Rasey JS, Krohn KA. A radiosynthesis of fluorine-18 fluoromisonidazole. J Nucl Med 1989;30:343-350
  86. Casciari JJ, Graham MM, Rasey JS. A modeling approach for quantifying tumor hypoxia with [F-18]fluoromisonidazole PET time-activity data. Med Phys 1995;22:1127-1139 https://doi.org/10.1118/1.597506
  87. Horsman MR, Wood PJ, Chaplin DJ, Brown JM, Overgaard J. The potentiation of radiation damage by nicotinamide in the SCCVII tumour in vivo. Radiother Oncol 1990;18:49-57 https://doi.org/10.1016/0167-8140(90)90022-O
  88. Chaplin DJ, Horsman MR, Trotter MJ. Effect of nicotinamide on the microregional heterogeneity of oxygen delivery within a murine tumor. J Natl Cancer Inst 1990;82:672-676 https://doi.org/10.1093/jnci/82.8.672
  89. Zackheim HS, Vasily DB, Westphal ML, Hastings CW. Reactions to niacinamide. J Am Acad Dermatol 1981;4:736-737
  90. Horsman MR, Brown DM, Lemmon MJ, Brown JM, Lee WW. Preferential tumor radiosensitization by analogs of nicotinamide and benzamide. Int J Radiat Oncol Biol Phys 1986;12:1307-1310 https://doi.org/10.1016/0360-3016(86)90160-4
  91. Horsman MR, Hoyer M, Honess DJ, Dennis IF, Overgaard J. Nicotinamide pharmacokinetics in humans and mice: a comparative assessment and the implications for radiotherapy. Radiother Oncol 1993;27:131-139 https://doi.org/10.1016/0167-8140(93)90133-S
  92. Horsman MR, Chaplin DJ, Overgaad J. Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells. Cancer Res 1990;50:7430-7436
  93. Kjellen E, Pero RW, Nilsson P, Hill SA. Effect of hyperthermia and/or nicotinamide on the radiation response of a C3H mammary carcinoma. Eur J Cancer Clin Oncol 1989;25:1733-1737 https://doi.org/10.1016/0277-5379(89)90342-8
  94. Hoskin PJ, Saunders MI, Phillips H, et al. Carbogen and nicotinamide in the treatment of bladder cancer with radical radiotherapy. Br J Cancer 1997;76:260-263 https://doi.org/10.1038/bjc.1997.372
  95. Denekamp J, Fowler JF. ARCON--current status: summary of a workshop on preclinical and clinical studies. Acta Oncol 1997;36:517-525 https://doi.org/10.3109/02841869709001308