• Title/Summary/Keyword: morpheme analyzer

Search Result 43, Processing Time 0.024 seconds

A Morpheme Analyzer based on Transformer using Morpheme Tokens and User Dictionary (사용자 사전과 형태소 토큰을 사용한 트랜스포머 기반 형태소 분석기)

  • DongHyun Kim;Do-Guk Kim;ChulHui Kim;MyungSun Shin;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.19-27
    • /
    • 2023
  • Since morphemes are the smallest unit of meaning in Korean, it is necessary to develop an accurate morphemes analyzer to improve the performance of the Korean language model. However, most existing analyzers present morpheme analysis results by learning word unit tokens as input values. However, since Korean words are consist of postpositions and affixes that are attached to the root, even if they have the same root, the meaning tends to change due to the postpositions or affixes. Therefore, learning morphemes using word unit tokens can lead to misclassification of postposition or affixes. In this paper, we use morpheme-level tokens to grasp the inherent meaning in Korean sentences and propose a morpheme analyzer based on a sequence generation method using Transformer. In addition, a user dictionary is constructed based on corpus data to solve the out - of-vocabulary problem. During the experiment, the morpheme and morpheme tags printed by each morpheme analyzer were compared with the correct answer data, and the experiment proved that the morpheme analyzer presented in this paper performed better than the existing morpheme analyzer.

syntactic morpheme generation using morpheme dictionary (형태소 사전 기반 구문 형태소 생성)

  • Park, In-Cheol
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.725-734
    • /
    • 2005
  • Syntactic morpheme is proposed for reducing morpheme units generated by korean morpheme analyzer. It is proved that syntactic morpheme remarkably diminished the overhead of syntactic analyzer. However, the syntactic morpheme generation is so separated from the morpheme analyze phase in the existing system that it needs an extra execution time. Moreover, the method do not consider spacing-free statements. In this paper, we propose a syntactic morpheme generation using morpheme dictionary in order to resolve the problems. Experiments show that our proposed method reduce generation time more than one hundred times as compared with the existing one.

  • PDF

Part-Of-Speech Tagging and the Recognition of the Korean Unknown-words Based on Machine Learning (기계학습에 기반한 한국어 미등록 형태소 인식 및 품사 태깅)

  • Choi, Maeng-Sik;Kim, Hark-Soo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Unknown morpheme errors in Korean morphological analysis are divided into two types: The one is the errors that a morphological analyzer entirely fails to return any morpheme sequences, and the other is the errors that a morphological analyzer returns incorrect combinations of known morphemes. Most previous unknown morpheme estimation techniques have been focused on only the former errors. This paper proposes a unknown morpheme estimation method which can handle both of the unknown morpheme errors. The proposed method detects Eojeols (Korean spacing units) that may include unknown morpheme errors using SVM (Support Vector Machine). Then, using CRFs (Conditional Random Fields), it segments morphemes from the detected Eojeols and annotates the segmented morphemes with new POS tags. In the experiments, the proposed method outperformed the conventional method based on the longest matching of functional words. Based on the experimental results, we knew that the second type errors should be dealt with in order to increase the performance of Korean morphological analysis.

An Efficient Korean Morpheme Analyzer and Synthesizer using Dictionary Information and Chart Data Structure (사전 정보와 차트 자료 구조를 이용한 효율적인 형태소 분석기 및 합성기(KoMAS))

  • 김정해;이상조
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.123-131
    • /
    • 1994
  • This paper describes on the analysis of morphemes and it's synthesis being constituted of Korean word phrases. To analyze morphemes, we propose the introduction of "morph" for morpheme features in lexicon and the usage of chart data structures. it controls over the generation of unnecessary morpheme, and extracts every possible morpheme unit in a word phrase which minimized lexicon investigation by using heuristic information. Moreover, to synthesize morphemes, it is composed of every possible analyzed morphemes in word phrases to take advantage of speech and union information which can be obtained for program. Therefore, the systhesis of analyzed morphemes were designed to aid a syntactic analysis next step of natural language processing. This system for analyzing and systhesizing morpheme was to generate a word phrase by unifying syntactic and semantic features of analyzed morphemes in lexicon, and then established by C language of the personal computer.

  • PDF

Implementation of A Morphological Analyzer Based on Pseudo-morpheme for Large Vocabulary Speech Recognizing (대어휘 음성인식을 위한 의사형태소 분석 시스템의 구현)

  • 양승원
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.102-108
    • /
    • 1999
  • It is important to decide processing unit in the large vocabulary speech recognition system we propose a Pseudo-Morpheme as the recognition unit to resolve the problems in the recognition systems using the phrase or the general morpheme. We implement a morphological analysis system and tagger for Pseudo-Morpheme. The speech processing system using this pseudo-morpheme can get better result than other systems using the phrase or the general morpheme. So, the quality of the whole spoken language translation system can be improved. The analysis-ratio of our implemented system is similar to the common morphological analysis systems.

  • PDF

Classification of Education Video by Subtitle Analysis (자막 분석을 통한 교육 영상의 카테고리 분류 방안)

  • Lee, Ji-Hoon;Lee, Hyeon Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.88-90
    • /
    • 2021
  • This paper introduces a method for extracting subtitles from lecture videos through a Korean morpheme analyzer and classifying video categories according to the extracted morpheme information. In some cases incorrect information is entered due to human error and reflected in the characteristics of the items, affecting the accuracy of the recommendation system. To prevent this, we generate a keyword table for each category using morpheme information extracted from pre-classified videos, and compare the similarity of morpheme in each category keyword table to classify categories of Lecture videos using the most similar keyword table. These human intervention reduction systems directly classify videos and aim to increase the accuracy of the system.

  • PDF

Syllable-based POS Tagging without Korean Morphological Analysis (형태소 분석기 사용을 배제한 음절 단위의 한국어 품사 태깅)

  • Shim, Kwang-Seob
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.3
    • /
    • pp.327-345
    • /
    • 2011
  • In this paper, a new approach to Korean POS (Part-of-Speech) tagging is proposed. In previous works, a Korean POS tagger was regarded as a post-processor of a morphological analyzer, and as such a tagger was used to determine the most likely morpheme/POS sequence from morphological analysis. In the proposed approach, however, the POS tagger is supposed to generate the most likely morpheme and POS pair sequence directly from the given sentences. 398,632 eojeol POS-tagged corpus and 33,467 eojeol test data are used for training and evaluation, respectively. The proposed approach shows 96.31% of POS tagging accuracy.

  • PDF

Korean Homograph Tagging Model based on Sub-Word Conditional Probability (부분어절 조건부확률 기반 동형이의어 태깅 모델)

  • Shin, Joon Choul;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.10
    • /
    • pp.407-420
    • /
    • 2014
  • In general, the Korean morpheme analysis procedure is divided into two steps. In the first step as an ambiguity generation step, an Eojeol is analyzed into many morpheme sequences as candidates. In the second step, one appropriate candidate is chosen by using contextual information. Hidden Markov Model(HMM) is typically applied in the second step. This paper proposes Sub-word Conditional Probability(SCP) model as an alternate algorithm. SCP uses sub-word information of adjacent eojeol first. If it failed, then SCP use morpheme information restrictively. In the accuracy and speed comparative test, HMM's accuracy is 96.49% and SCP's accuracy is just 0.07% lower. But SCP reduced processing time 53%.

A Reranking Model for Korean Morphological Analysis Based on Sequence-to-Sequence Model (Sequence-to-Sequence 모델 기반으로 한 한국어 형태소 분석의 재순위화 모델)

  • Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.121-128
    • /
    • 2018
  • A Korean morphological analyzer adopts sequence-to-sequence (seq2seq) model, which can generate an output sequence of different length from an input. In general, a seq2seq based Korean morphological analyzer takes a syllable-unit based sequence as an input, and output a syllable-unit based sequence. Syllable-based morphological analysis has the advantage that unknown words can be easily handled, but has the disadvantages that morpheme-based information is ignored. In this paper, we propose a reranking model as a post-processor of seq2seq model that can improve the accuracy of morphological analysis. The seq2seq based morphological analyzer can generate K results by using a beam-search method. The reranking model exploits morpheme-unit embedding information as well as n-gram of morphemes in order to reorder K results. The experimental results show that the reranking model can improve 1.17% F1 score comparing with the original seq2seq model.

Web Document Classification Based on Hangeul Morpheme and Keyword Analyses (한글 형태소 및 키워드 분석에 기반한 웹 문서 분류)

  • Park, Dan-Ho;Choi, Won-Sik;Kim, Hong-Jo;Lee, Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.19D no.4
    • /
    • pp.263-270
    • /
    • 2012
  • With the current development of high speed Internet and massive database technology, the amount of web documents increases rapidly, and thus, classifying those documents automatically is getting important. In this study, we propose an effective method to extract document features based on Hangeul morpheme and keyword analyses, and to classify non-structured documents automatically by predicting subjects of those documents. To extract document features, first, we select terms using a morpheme analyzer, form the keyword set based on term frequency and subject-discriminating power, and perform the scoring for each keyword using the discriminating power. Then, we generate the classification model by utilizing the commercial software that implements the decision tree, neural network, and SVM(support vector machine). Experimental results show that the proposed feature extraction method has achieved considerable performance, i.e., average precision 0.90 and recall 0.84 in case of the decision tree, in classifying the web documents by subjects.