• 제목/요약/키워드: monooxygenase

검색결과 194건 처리시간 0.024초

INDUCTION OF CYTOCHROME P-450 ASSOCIATED MONOOXYGENASE ACTIVITIES BY PHENOBARBITAL AND 3-METHYLCHOLANTHRENE IN PRIMARY CULTURES OF ADULT RAT HEPATOCYTES

  • Park, Seong-Kyu;Ha, Jong-Ryul;Kim, H.M.;Yang, K.H.
    • Toxicological Research
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 1987
  • In vitro induction of cytochrome 450 associated monooxygenase activities by phenobarbital (PB) and 3-methylcholanthrene (MC) was investigated in primary cultures of adult rat hepatocytes. PB and MC were added to the culture 24 hr after the initial plating of hepatocytes. A signiftcant increase of the activities of 7-ethoxycoumarin 0-deethylase and aryl hydrocarbon hydroxylase were observed in MC and PB treated culture. MC caused about 500% induction of the initial oxidation rates of both enzymes in 48 hr. However the PB maintained both enzyme activities close to the level of freshly isolated hepatocytes. Biphenyl 4-hydroxylase and aminopyrine N-demethylase activities were also induced by MC and PB. But the level of induction was less than that occuring with 7-ethoxycoumarin 0-deethylase and aryl hydrocarbon hydroxylase. When aflatoxin $B_1$ was added to the hepatocyte cultures which have been treated with MC or PB, it caused a significant increase of the unscheduled DNA synthesis at higher dose of aflatoxin $B_1$ as compared to those of untreated control hepatocyte cultures. The results suggest that microsomal enzyme activities can be selectively controlled preferably in hepatocyte cultures by the in vitro induction method. This principle may be useful for studying the metabolism and other toxicological studies.

  • PDF

생촉매를 이용한 광학활성 에폭사이드 생산 (Biocatalytic Production of Chiral Epoxides)

  • 이은열;최원재;윤성준;김희숙;최차용
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.291-296
    • /
    • 1999
  • 광학활성 에폭사이드는 광학활성 의약품, 농약, 기능성 식품 제조용 핵심 유기중간체로 사용될 수 있다. 광학활성 에폭사이드의 생물공학적 생산 사례로는 diltiazem 합성용 중간체인 methyl trans-3-(4-methoxyphenyl)glycidate를 lipase를 고정화한 중공사막 반응기를 이용하여 생산되고 있으며, 미생물 탈할로겐화반응을 이용하여 광학활성 epichlorohydrin 및 glycidol도 생산되고 있다. 생물공학적으로 광학활성 에폭사이드를 생산하는 방법은 크게 두 가지로 구분할 수 있는데, 알켄 등을 기질로 하여 monooxygenase나 perocidase 등을 이용하여 직접 에폭시화반응을 시키는 방법과 박테리아, 곰팡이, 효모 유래의 미생물 에폭사이드 가수분해효소를 이용하여 라세믹 에폭사이드를 광학분할시켜 얻는 방법이 있다. 특히 에폭사이드 가수분해효소를 이용한 광학활성 에폭사이드 생산은 높은 광학순도를 얻을 수 있으며 일반적으로 라세믹 에폭사이드를 값싸고 쉽게 구할 수 있어 상업화 가능성이 우수하므로 이에 대한 많은 연구개발이 필요하다.

  • PDF

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast

  • Jeon, Hyunwoo;Durairaj, Pradeepraj;Lee, Dowoo;Ahsan, Md Murshidul;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2076-2086
    • /
    • 2016
  • Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at $30^{\circ}C$. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

Alteration of Substrate Specificity by Common Variants, E158K/E308G and V257M, in Human Hepatic Drug-metabolizing Enzyme, Flavin-containing Monooxygenase 3

  • Lee, Jung-Kyu;Kang, Ju-Hee;Cha, Young-Nam;Chung, Woon-Gye;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권3호
    • /
    • pp.157-162
    • /
    • 2003
  • Our earlier studies found a significant correlation between the activities of ranitidine N-oxidation catalyzed by hepatic flavin-containing monooxygenase (FMO) and the presence of mutations in exon 4 (E158K) and exon 7 (E308G) of the FMO3 gene in Korean volunteers. However, caffeine N-1 demethylation (which is also partially catalyzed by FMO) was not significantly correlated with these FMO3 mutations. In this study, we examined another common mutation (V257M) in exon 6 of FMO3 gene. The V257M variant, which is caused by a point mutation (G769A), was commonly observed (13.21% allele frequency) in our subjects (n=159). This point mutation causes a substitution of $Val^{257}$ to $Met^{257}$, with transformation of the secondary structure. The presence of this mutant allele correlated significantly with a reduction in caffeine N-1-demethylating activity, but was not correlated with the activity of N-oxidation of ranitidine. In a family study, the low FMO activity observed in a person heterozygous for a nonsense mutation in exon 4 (G148X) and heterozygous for missense mutation in exon 6 (V257M) of FMO3 was attributed to the mutations. Our results suggest that various point mutations in the coding regions of FMO3 may influence FMO3 activity according to the probe substrates of varying chemical structure that correlate with each mutation on the FMO3 gene.

생쥐에서 Cytochrome P-450 효소계에 의한 ${\alpha}$-Endosulfan의 시험관내 대사시험 (in Vitro Metabolism Study of ${\alpha}$-Endosulfan with Microsomal Cytochrome P-450 Monooxygenase)

  • 김인선;이강봉;심재한;서용택
    • Applied Biological Chemistry
    • /
    • 제38권5호
    • /
    • pp.463-467
    • /
    • 1995
  • 생쥐(Balb/C) 간과 신장의 microsomal cytochrome P-450 효소계에 의한 ${\alpha}$-endosulfan의 시험관내 대사시험을 수행하였다. ${\alpha}$-Endosulfan은 endosulfan lactone(EL), endosulfan hydroxyether(EHE), endosulfan alcohol(EA), endosulfan sulfate(ES), endosulfan ether(EE) 그리고 ${\beta}$-endosulfan(${\beta}$-E) 등으로 대사되었으며 주요 대사산물은 간에서 EL(13.2%) 및 EA(11.5%)이었으며 신장에서 EA(17.4%) 및 EHE(19.3%)이었다. Microsome 배양액중 유기용매 추출성 대사산물은 63.4%이었으며 수용성 대사산물은 37.1%이었다. 수용성 대사산물은 EA(83.9%), EHE(4.5%) 그리고 ES(2.3%)로서 주요 수용성 대사산물은 EA이었다. Piperonyl butoxide는 ${\alpha}$-endosulfan으로부터 EE의 생성을 86%, EA의 생성을 92% 그리고 EHE, EL 및 ES의 생성을 대부분 저해하였다.

  • PDF

Development of Recombinant Pseudomonas putida Containing Homologous Styrene Monooxygenase Genes for the Production of (S)-Styrene Oxide

  • Bae, Jong-Wan;Han, Ju-Hee;Park, Mi-So;Lee, Sun-Gu;Lee, Eun-Yeol;Jeong, Yong-Joo;Park, Sung-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.530-537
    • /
    • 2006
  • Recently isolated, Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e. > 99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of the styAB gene that was used as host. This indicates that the copy number of styAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.

폴리에틸렌 분해를 위한 효소로써 Baeyer-Villiger monooxygenases의 잠재력 (Potential of Baeyer-Villiger monooxygenases as an enzyme for polyethylene decomposition)

  • 윤예린;장유신
    • Journal of Applied Biological Chemistry
    • /
    • 제64권4호
    • /
    • pp.433-438
    • /
    • 2021
  • 폴리에틸렌은 농업용 필름으로 널리 사용되고 있지만, 이를 친환경적으로 분해하기 위한 기술은 부족한 상황이다. 이에 최근 폴리에틸렌 분해를 위한 친환경 기술 개발에 대한 관심이 높아지고 있다. 폴레에틸렌의 생물학적 분해에는 몇가지 산화 단계가 필요할 것이라고 예상된다. 먼저, 폴리에틸렌 사슬에 2차 알코올이 형성되고, 알코올은 카르보닐기로 산화된다. 이후 과정에서 카르보닐기는 Baeyer-Villiger monooxygenase (BVMO)에 의해 에스터로 전환되고, 이 에스터는 마지막 단계에서 lipase와 esterase에 의해 절단될 것으로 예상된다. 본 연구에서는 폴리에틸렌 분해 과정에 관여하는 중요한 효소 중 하나인 BVMO의 반응 메커니즘, 분류, 효소공학 측면에서 리뷰하였다. 또한 BVMO를 사용한 폴리에틸렌 분해 분야의 향후 연구전망도 간략히 덧붙였다.

The changes of stresses and ecdysteroid biosynthesis gene expression levels in Kynurenine 3-monooxygenase mutant Bombyx mori

  • Jeong, Chan Young;Lee, Chang Hoon;Kim, Su Bae;Kang, Sang Kuk;Ju, Wan-Taek;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Park, Jong Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제43권1호
    • /
    • pp.29-36
    • /
    • 2021
  • Silkworms have long been bred with human history to produce silk. It has been with humans for longer than other industrial insects, and the silkworm variety has been continuously improved. Silkworms have been developed into the optimal form for producing high quality silk and pupae. Recently, the production of transgenic silkworms has further expanded the possibility of industrial value of silkworms. Kynurenine 3-monooxygenase (KMO), which is a flavin enzyme, is known for its involvement in ommochrome pigment synthesis. In the field of mammals, including humans, previous studies have revealed the function and role of KMO, which is an important enzyme for various immune responses and cell protection. However, in the case of insects, the function of KMO has only been studied to be involved in the formation of pigment, and accordingly, KMO is used exclusively on screening for generation of transgenic insects as a marker. In this study, using KMO-edited silkworms, it was intended to discover the novel functions and roles of KMO in silkworms by identifying changes in the expression of various genes associated with stress and growth. The changes were observed in expressions of genes regulating on stresses to survive and those on ecdysteroid hormone between wild-type (WT) silkworms and kmo mutant silkworms. The loss of KMO, in particular, decreased the expression of the shadow (sad) gene, one of the Halloween genes in the synthesis of ecdysteroid. In conclusion, these results suggest that silkworm KMO is responsible for potential functions regarding stress response and ecdysteroid synthesis.