Browse > Article
http://dx.doi.org/10.4014/jmb.1605.05090

Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast  

Jeon, Hyunwoo (Department of Bioscience and Biotechnology, Konkuk University)
Durairaj, Pradeepraj (Korean Lichen Research Institute, Sunchon National University)
Lee, Dowoo (Department of Bioscience and Biotechnology, Konkuk University)
Ahsan, Md Murshidul (School of Biotechnology, Yeungnam University)
Yun, Hyungdon (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.12, 2016 , pp. 2076-2086 More about this Journal
Abstract
Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at $30^{\circ}C$. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.
Keywords
Cytochrome P450; benzoate hydroxylase; glucose dehydrogenase; heterologous expression; biotransformation; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Harwood CS, Parales RE. 1996. The ${\beta}$-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590.   DOI
2 Jawallapersand P, Mashele SS, Kovačič L, Stojan J, Komel R, Pakala SB, et al. 2014. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. PLoS One 9: e107209.   DOI
3 Bjerrum J, Schwarzenbach G, Sillén LG, Anderegg G, Rasmussen S. 1957. Stability Constants of Metal-ion Complexes, with Solubility Products of Inorganic Substances. Chemical Society, London, UK.
4 Blackwell M. 2011. The Fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 98: 426-438.   DOI
5 Lee W-H, Kim M-D, Jin Y-S, Seo J-H. 2013. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl. Microbiol. Biotechnol. 97: 2761-2772.   DOI
6 Julsing MK, Cornelissen S, Bühler B, Schmid A. 2008. Hemeiron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol. 12: 177-186.   DOI
7 Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, et al. 2014. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 116: 955-966.   DOI
8 Braun A, Geier M, Bühler B, Schmid A, Mauersberger S, Glieder A. 2012. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes. Microb. Cell Fact. 11: 1.   DOI
9 Črešnar B, Petrič Š. 2011. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta 1814: 29-35.   DOI
10 Lah L, Podobnik B, Novak M, Korošec B, Berne S, Vogelsang M, et al. 2011. The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Mol. Microbiol. 81: 1374-1389.   DOI
11 Lu Y, Mei L. 2007. Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. J. Ind. Microbiol. Biotechnol. 34: 247-253.   DOI
12 van Gorcom RF, van den Hondel CA, Punt PJ. 1998. Cytochrome P450 enzyme systems in fungi. Fungal Genet. Biol. 23: 1-17.   DOI
13 Durairaj P, Hur J-S, Yun H. 2016. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Fact. 15: 1.   DOI
14 Matsuzaki F, Wariishi H. 2005. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun. 334: 1184-1190.   DOI
15 Moktali V, Park J, Fedorova-Abrams ND, Park B, Choi J, Lee Y-H, Kang S. 2012. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13: 525.   DOI
16 O'Reilly E, Köhler V, Flitsch SL, Turner NJ. 2011. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem. Commun. 47: 2490-2501.   DOI
17 Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL, et al. 2008. CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds. J. Med. Chem. 51: 3480-3486.   DOI
18 Rauter M, Kasprzak J, Denter S, Becker K, Baronian K, Bode R, et al. 2014. Reusability of ADH and GDH producing Arxula adeninivorans cells and cell extract for the production of 1-(S)-phenylethanol. J. Mol. Catal. B Enzym. 108: 72-76.   DOI
19 Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, et al. 2012. Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl. Microbiol. Biotechnol. 95: 357-367.   DOI
20 Uppada V, Bhaduri S, Noronha SB. 2014. Cofactor regeneration- an important aspect of biocatalysis. Curr. Sci. India 106: 946957.
21 Berne S, Podobnik B, Zupanec N, Novak M, Kraševec N, Turk S, et al. 2012. Virtual screening yields inhibitors of novel antifungal drug target, benzoate 4-monooxygenase. J. Chem. Inf. Model. 52: 3053-3063.   DOI
22 Schrewe M, Julsing MK, Bühler B, Schmid A. 2013. Wholecell biocatalysis for selective and productive C-O functional group introduction and modification. Chem. Soc. Rev. 42: 6346-6377.   DOI
23 Xu Z, Jing K, Liu Y, Cen P. 2007. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J. Ind. Microbiol. Biotechnol. 34: 83-90.
24 Yoon SA. 2013. Development of a bioconversion system using Saccharomyces cerevisiae reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis. J. Microbiol. Biotechnol. 23: 1395-1402.   DOI
25 Zehentgruber D, Dr gan C-A, Bureik M, Lütz S. 2010. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J. Biotechnol. 146: 179-185.   DOI
26 Zhang J-D, Li A-T, Yu H-L, Imanaka T, Xu J-H. 2011. Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J. Ind. Microbiol. Biotechnol. 38: 633-641.   DOI
27 Zöllner A, Buchheit D, Meyer MR, Maurer HH, Peters FT, Bureik M. 2010. Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2: 1277-1290.   DOI
28 Berne S, Kovačič L, Sova M, Kraševec N, Gobec S, Križaj I, Komel R. 2015. Benzoic acid derivatives with improved antifungal activity: design, synthesis, structure-activity relationship (SAR) and CYP53 docking studies. Bioorg. Med. Chem. 23: 4264-4276.   DOI
29 Durairaj P, Jung E, Park HH, Kim B-G, Yun H. 2015. Comparative functional characterization of a novel benzoate hydroxylase cytochrome P450 of Fusarium oxysporum. Enzyme Microb. Technol. 70: 58-65.   DOI
30 Durairaj P, Malla S, Nadarajan SP, Lee P-G, Jung E, Park HH, et al. 2015. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ${\omega}$-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 14: 1.   DOI
31 Bernhardt R, Urlacher VB. 2014. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl. Microbiol. Biotechnol. 98: 6185-6203.   DOI
32 Faber BW, van Gorcom RF, Duine JA. 2001. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch. Biochem. Biophys. 394: 245-254.   DOI