DOI QR코드

DOI QR Code

Potential of Baeyer-Villiger monooxygenases as an enzyme for polyethylene decomposition

폴리에틸렌 분해를 위한 효소로써 Baeyer-Villiger monooxygenases의 잠재력

  • Yoon, Ye Rin (Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU)) ;
  • Jang, Yu-Sin (Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU))
  • Received : 2021.11.03
  • Accepted : 2021.11.16
  • Published : 2021.12.31

Abstract

Polyethylene is widely used as an agricultural film, but eco-friendly technology is lacking for its decomposition. Thus, recently, much attention has been paid to develop a technology for biological polyethylene decomposition. It has been expected that several oxidation steps will be required in the biological degradation of polyethylene. First, secondary alcohol is formed on the polyethylene chain, and then the alcohol is oxidized to a carbonyl group. In the subsequent process, the carbonyl group is converted to an ester by Baeyer-Villiger monooxygenase (BVMO), and this ester bond is expected to be cleaved by lipase and esterase in the final step. In this work, we reviewed BVMO as one of the promising enzymes for polyethylene decomposition, in terms of its reaction mechanism, classification, and engineering. In addition, we also give a brief perspective on polyethylene decomposition using BVMO.

폴리에틸렌은 농업용 필름으로 널리 사용되고 있지만, 이를 친환경적으로 분해하기 위한 기술은 부족한 상황이다. 이에 최근 폴리에틸렌 분해를 위한 친환경 기술 개발에 대한 관심이 높아지고 있다. 폴레에틸렌의 생물학적 분해에는 몇가지 산화 단계가 필요할 것이라고 예상된다. 먼저, 폴리에틸렌 사슬에 2차 알코올이 형성되고, 알코올은 카르보닐기로 산화된다. 이후 과정에서 카르보닐기는 Baeyer-Villiger monooxygenase (BVMO)에 의해 에스터로 전환되고, 이 에스터는 마지막 단계에서 lipase와 esterase에 의해 절단될 것으로 예상된다. 본 연구에서는 폴리에틸렌 분해 과정에 관여하는 중요한 효소 중 하나인 BVMO의 반응 메커니즘, 분류, 효소공학 측면에서 리뷰하였다. 또한 BVMO를 사용한 폴리에틸렌 분해 분야의 향후 연구전망도 간략히 덧붙였다.

Keywords

Acknowledgement

This study was supported by Rural Development Administration, Republic of Korea through the "Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ01492601)"

References

  1. Ghatge S, Yang Y, Ahn J-H, Hur H-G (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63: 1-14. doi: 10.1186/s13765-020-00511-3
  2. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3: e1700782. doi: 10.1126/sciadv.1700782
  3. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347: 768-771. doi: 10.1126/science.1260352
  4. Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Microbiol Biotechnol 85: e01095-01019. doi: 10.1128/AEM.01095-19
  5. Restrepo-Florez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene-A review. Int Biodeter Biodegr 88: 83-90. doi: 10.1016/j.ibiod.2013.12.014
  6. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98: 1093-1100. doi: 10.1111/j.1365-2672.2005.02553.x
  7. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72: 323-327. doi: 10.1016/S0141-3910(01)00027-1
  8. Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20: 4146-4153. doi: 10.1007/s11356-012-1378-y
  9. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56: 1789-1796. doi: 10.1002/app.1995.070561309
  10. Lee H-S, Hwang I-S, Park S-W, Choi G-H, Ryu S-H (2020) Identification of reduced plant uptake and reduction effects of azoxystrobin, procymidone and tricyclazole by biochars and quicklime. J Appl Biol Chem 63: 275-282. doi: 10.3839/jabc.2020.037
  11. Lee S-H, Kwak S-Y, Hwang J-I, Kim H-J, Kim T-H, Kim J-E (2019) Correlation between physicochemical properties and biological half-life of triazole fungicides in perilla leaf. J Appl Biol Chem 62: 407-415. doi: 10.3839/jabc.2019.056
  12. Kim S-H, Kim J-A, Im M-H (2020) Residual characteristics of pesticide in banana from international pesticide residue monitoring data. J Appl Biol Chem 63: 9-22. doi: 10.3839/jabc.2020.002
  13. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98: 1093-1100. doi: 10.1111/j.1365 2672.2005.02553.x
  14. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93: 561-584. doi: 10.1016/j.polymdegradstab.2007.11.008
  15. Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64: 2578-2584. doi: 10.1128/AEM.64.7.2578-2584.1998
  16. Van Beilen JB, Li Z, Duetz WA, Smits TH, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58: 427-440. doi: 10.2516/ogst:2003026
  17. Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): A review. J Environ Chem Eng 3: 462-473. doi: 10.1016/j.jece.2015.01.003
  18. Pathak VM, Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4: 1-31. doi: 10.1186/s40643-017-0145-9
  19. Kirschner A, Altenbuchner J, Bornscheuer UT (2007) Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli. Appl Microbiol Biotechnol 75: 1095-1101. doi: 10.1007/s00253-007-0902-3
  20. Leisch H, Morley K, Lau PC (2011) Baeyer-Villiger monooxygenases: more than just green chemistry. Chem Rev 111: 4165-4222. doi: 10.1021/cr1003437
  21. Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 37: 373-380. doi: 10.1016/j.tibs.2012.06.005
  22. Palfey BA, McDonald CA (2010) Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 493: 26-36. doi: 10.1016/j.abb.2009.11.028
  23. Kamerbeek NM, Fraaije MW, Janssen DB (2004) Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases. Eur J Biochem 271: 2107-2116. doi: 10.1111/j.1432-1033.2004.04126.x
  24. Furst MJ, Gran-Scheuch A, Aalbers FS, Fraaije MW (2019) Baeyer-Villiger monooxygenases: tunable oxidative biocatalysts. ACS Catal 9: 11207-11241. doi: 10.1021/acscatal.9b03396
  25. Franceschini S, van Beek HL, Pennetta A, Martinoli C, Fraaije MW, Mattevi A (2012) Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase. J Biol Chem 287: 22626-22634. doi: 10.1074/jbc.M112.372177
  26. Schmidt S, Bornscheuer UT (2020) Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. In: The Enzymes, vol 47. Elsevier, pp 231-281. doi: 10.1016/bs.enz.2020.05.007
  27. Malito E, Alfieri A, Fraaije MW, Mattevi A (2004) Crystal structure of a Baeyer-Villiger monooxygenase. Proc Natl Acad Sci USA 101: 13157-13162. doi: 10.1073/pnas.0404538101
  28. Orru R, Dudek HM, Martinoli C, Pazmino DET, Royant A, Weik M, Fraaije MW, Mattevi A (2011) Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization. J Biol Chem 286: 29284-29291. doi: 10.1074/jbc.M111.255075
  29. Mirza IA, Yachnin BJ, Wang S, Grosse S, Bergeron H, Imura A, Iwaki H, Hasegawa Y, Lau PC, Berghuis AM (2009) Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor. J Am Chem Soc 131: 8848-8854. doi: 10.1021/ja9010578
  30. Riebel A, Dudek H, De Gonzalo G, Stepniak P, Rychlewski L, Fraaije M (2012) Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl Microbiol Biotechnol 95: 1479-1489. doi: 10.1007/s00253-011-3823-0
  31. Ferroni FM, Tolmie C, Smit MS, Opperman DJ (2016) Structural and catalytic characterization of a fungal Baeyer-Villiger monooxygenase. PLoS One 11: e0160186. doi: 10.1371/journal.pone.0160186
  32. Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ (2014) Flavin dependent monooxygenases. Arch Biochem Biophys 544: 2-17. doi: 10.1016/j.abb.2013.12.005
  33. Van Berkel W, Kamerbeek N, Fraaije M (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124: 670-689. doi: 10.1016/j.jbiotec.2006.03.044
  34. Willetts A (2019) Characterised flavin-dependent two-component monooxygenases from the CAM plasmid of Pseudomonas putida ATCC 17453 (NCIMB 10007): ketolactonases by another name. Microorganisms 7: 1. doi: 10.3390/microorganisms7010001
  35. Iwaki H, Grosse S, Bergeron H, Leisch H, Morley K, Hasegawa Y, Lau PC (2013) Camphor pathway redux: functional recombinant expression of 2, 5-and 3, 6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl Environ Microbiol 79: 3282-3293. doi: 10.1128/AEM.03958-12
  36. Kadow M, Loschinski K, Sass S, Schmidt M, Bornscheuer UT (2012) Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization. Appl Microbiol Biotechnol 96: 419-429. doi: 10.1007/s00253-011-3859-1
  37. Gibson M, Nur-e-alam M, Lipata F, Oliveira MA, Rohr J (2005) Characterization of kinetics and products of the Baeyer-Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug mithramycin from Streptomyces argillaceus. J Am Chem Soc 127: 17594-17595. doi: 10.1021/ja055750t
  38. Tolmie C, Smit MS, Opperman DJ (2019) Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 36: 326-353. doi: 10.1039/c8np00054a
  39. Huang S, Tabudravu J, Elsayed SS, Travert J, Peace D, Tong MH, Kyeremeh K, Kelly SM, Trembleau L, Ebel R (2015) Discovery of a single monooxygenase that catalyzes carbamate formation and ring contraction in the biosynthesis of the legonmycins. Angew Chem Int Ed 54: 12697-12701. doi: 10.1002/anie.201502902
  40. Schimming O, Challinor VL, Tobias NJ, Adihou H, Grun P, Poschel L, Richter C, Schwalbe H, Bode HB (2015) Structure, biosynthesis, and occurrence of bacterial pyrrolizidine alkaloids. Angew Chem Int Ed 54: 12702-12705. doi: 10.1002/anie.201504877
  41. Rix U, Remsing LL, Hoffmeister D, Bechthold A, Rohr J (2003) Urdamycin L: A novel metabolic shunt product that provides evidence for the role of the urdM gene in the urdamycin A biosynthetic pathway of Streptomyces fradiae Tu 2717. ChemBioChem 4: 109-111. doi: 10.1002/cbic.200390002
  42. Weckbecker A, Groger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. In: Biosyst Eng. Springer, pp 195-242. doi: 10.1007/10_2009_55
  43. Beier A, Bordewick S, Genz M, Schmidt S, Van Den Bergh T, Peters C, Joosten HJ, Bornscheuer UT (2016) Switch in cofactor specificity of a Baeyer-Villiger monooxygenase. ChemBioChem 17: 2312-2315. doi: 10.1002/cbic.201600484
  44. Kelly DR, Knowles CJ, Mahdi JG, Taylor IN, Wright MA (1996) The enantioselective oxidation of sulfides to sulfoxides with Acinetobacter sp. NCIMB 9871, Pseudomonas sp. NCIMB 9872, Xanthobacter autotrophicus DSM 431 (NCIMB 10811) and the black yeast NV-2. Tetrahedron Asymmetry 7: 365-368. doi: 10.1016/0957-4166(96)00007-9
  45. Dascier D, Kambourakis S, Hua L, Rozzell JD, Stewart JD (2014) Influence of cofactor regeneration strategies on preparative-scale, asymmetric carbonyl reductions by engineered Escherichia coli. Org Process Res Dev 18: 793-800. doi: 10.1021/op400312n
  46. Hummel W, Groger H (2014) Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. J Biotechnol 191: 22-31. doi: 10.1016/j.jbiotec.2014.07.449
  47. Wang X, Saba T, Yiu HH, Howe RF, Anderson JA, Shi J (2017) Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2: 621-654. doi: 10.1016/j.chempr.2017.04.009
  48. Willetts AJ, Knowles CJ, Levitt MS, Roberts SM, Sandey H, Shipston NF (1991) Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones. J Chem Soc Perkin Trans I : 1608-1610. doi : 10.1039/P19910001608