Browse > Article
http://dx.doi.org/10.3839/jabc.2021.058

Potential of Baeyer-Villiger monooxygenases as an enzyme for polyethylene decomposition  

Yoon, Ye Rin (Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU))
Jang, Yu-Sin (Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU))
Publication Information
Journal of Applied Biological Chemistry / v.64, no.4, 2021 , pp. 433-438 More about this Journal
Abstract
Polyethylene is widely used as an agricultural film, but eco-friendly technology is lacking for its decomposition. Thus, recently, much attention has been paid to develop a technology for biological polyethylene decomposition. It has been expected that several oxidation steps will be required in the biological degradation of polyethylene. First, secondary alcohol is formed on the polyethylene chain, and then the alcohol is oxidized to a carbonyl group. In the subsequent process, the carbonyl group is converted to an ester by Baeyer-Villiger monooxygenase (BVMO), and this ester bond is expected to be cleaved by lipase and esterase in the final step. In this work, we reviewed BVMO as one of the promising enzymes for polyethylene decomposition, in terms of its reaction mechanism, classification, and engineering. In addition, we also give a brief perspective on polyethylene decomposition using BVMO.
Keywords
Baeyer-Villiger monooxygenases; Enzyme engineering; Mechanism; Polyethylene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98: 1093-1100. doi: 10.1111/j.1365 2672.2005.02553.x   DOI
2 Dascier D, Kambourakis S, Hua L, Rozzell JD, Stewart JD (2014) Influence of cofactor regeneration strategies on preparative-scale, asymmetric carbonyl reductions by engineered Escherichia coli. Org Process Res Dev 18: 793-800. doi: 10.1021/op400312n   DOI
3 Hummel W, Groger H (2014) Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. J Biotechnol 191: 22-31. doi: 10.1016/j.jbiotec.2014.07.449   DOI
4 Willetts AJ, Knowles CJ, Levitt MS, Roberts SM, Sandey H, Shipston NF (1991) Biotransformation of endo-bicyclo[2.2.1]heptan-2-ols and endo-bicyclo[3.2.0]hept-2-en-6-ol into the corresponding lactones. J Chem Soc Perkin Trans I : 1608-1610. doi : 10.1039/P19910001608   DOI
5 Wang X, Saba T, Yiu HH, Howe RF, Anderson JA, Shi J (2017) Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2: 621-654. doi: 10.1016/j.chempr.2017.04.009   DOI
6 Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res 20: 4146-4153. doi: 10.1007/s11356-012-1378-y   DOI
7 Willetts A (2019) Characterised flavin-dependent two-component monooxygenases from the CAM plasmid of Pseudomonas putida ATCC 17453 (NCIMB 10007): ketolactonases by another name. Microorganisms 7: 1. doi: 10.3390/microorganisms7010001   DOI
8 Ferroni FM, Tolmie C, Smit MS, Opperman DJ (2016) Structural and catalytic characterization of a fungal Baeyer-Villiger monooxygenase. PLoS One 11: e0160186. doi: 10.1371/journal.pone.0160186   DOI
9 Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ (2014) Flavin dependent monooxygenases. Arch Biochem Biophys 544: 2-17. doi: 10.1016/j.abb.2013.12.005   DOI
10 Van Berkel W, Kamerbeek N, Fraaije M (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124: 670-689. doi: 10.1016/j.jbiotec.2006.03.044   DOI
11 Iwaki H, Grosse S, Bergeron H, Leisch H, Morley K, Hasegawa Y, Lau PC (2013) Camphor pathway redux: functional recombinant expression of 2, 5-and 3, 6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl Environ Microbiol 79: 3282-3293. doi: 10.1128/AEM.03958-12   DOI
12 Kadow M, Loschinski K, Sass S, Schmidt M, Bornscheuer UT (2012) Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization. Appl Microbiol Biotechnol 96: 419-429. doi: 10.1007/s00253-011-3859-1   DOI
13 Gibson M, Nur-e-alam M, Lipata F, Oliveira MA, Rohr J (2005) Characterization of kinetics and products of the Baeyer-Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug mithramycin from Streptomyces argillaceus. J Am Chem Soc 127: 17594-17595. doi: 10.1021/ja055750t   DOI
14 Mirza IA, Yachnin BJ, Wang S, Grosse S, Bergeron H, Imura A, Iwaki H, Hasegawa Y, Lau PC, Berghuis AM (2009) Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor. J Am Chem Soc 131: 8848-8854. doi: 10.1021/ja9010578   DOI
15 Tolmie C, Smit MS, Opperman DJ (2019) Native roles of Baeyer-Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 36: 326-353. doi: 10.1039/c8np00054a   DOI
16 Huang S, Tabudravu J, Elsayed SS, Travert J, Peace D, Tong MH, Kyeremeh K, Kelly SM, Trembleau L, Ebel R (2015) Discovery of a single monooxygenase that catalyzes carbamate formation and ring contraction in the biosynthesis of the legonmycins. Angew Chem Int Ed 54: 12697-12701. doi: 10.1002/anie.201502902   DOI
17 Schimming O, Challinor VL, Tobias NJ, Adihou H, Grun P, Poschel L, Richter C, Schwalbe H, Bode HB (2015) Structure, biosynthesis, and occurrence of bacterial pyrrolizidine alkaloids. Angew Chem Int Ed 54: 12702-12705. doi: 10.1002/anie.201504877   DOI
18 Rix U, Remsing LL, Hoffmeister D, Bechthold A, Rohr J (2003) Urdamycin L: A novel metabolic shunt product that provides evidence for the role of the urdM gene in the urdamycin A biosynthetic pathway of Streptomyces fradiae Tu 2717. ChemBioChem 4: 109-111. doi: 10.1002/cbic.200390002   DOI
19 Weckbecker A, Groger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. In: Biosyst Eng. Springer, pp 195-242. doi: 10.1007/10_2009_55   DOI
20 Beier A, Bordewick S, Genz M, Schmidt S, Van Den Bergh T, Peters C, Joosten HJ, Bornscheuer UT (2016) Switch in cofactor specificity of a Baeyer-Villiger monooxygenase. ChemBioChem 17: 2312-2315. doi: 10.1002/cbic.201600484   DOI
21 Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Polym Sci 56: 1789-1796. doi: 10.1002/app.1995.070561309   DOI
22 Ghatge S, Yang Y, Ahn J-H, Hur H-G (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63: 1-14. doi: 10.1186/s13765-020-00511-3   DOI
23 Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3: e1700782. doi: 10.1126/sciadv.1700782   DOI
24 Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347: 768-771. doi: 10.1126/science.1260352   DOI
25 Riebel A, Dudek H, De Gonzalo G, Stepniak P, Rychlewski L, Fraaije M (2012) Expanding the set of rhodococcal Baeyer-Villiger monooxygenases by high-throughput cloning, expression and substrate screening. Appl Microbiol Biotechnol 95: 1479-1489. doi: 10.1007/s00253-011-3823-0   DOI
26 Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Microbiol Biotechnol 85: e01095-01019. doi: 10.1128/AEM.01095-19   DOI
27 Restrepo-Florez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene-A review. Int Biodeter Biodegr 88: 83-90. doi: 10.1016/j.ibiod.2013.12.014   DOI
28 Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98: 1093-1100. doi: 10.1111/j.1365-2672.2005.02553.x   DOI
29 Lee H-S, Hwang I-S, Park S-W, Choi G-H, Ryu S-H (2020) Identification of reduced plant uptake and reduction effects of azoxystrobin, procymidone and tricyclazole by biochars and quicklime. J Appl Biol Chem 63: 275-282. doi: 10.3839/jabc.2020.037   DOI
30 Lee S-H, Kwak S-Y, Hwang J-I, Kim H-J, Kim T-H, Kim J-E (2019) Correlation between physicochemical properties and biological half-life of triazole fungicides in perilla leaf. J Appl Biol Chem 62: 407-415. doi: 10.3839/jabc.2019.056   DOI
31 Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 37: 373-380. doi: 10.1016/j.tibs.2012.06.005   DOI
32 Van Beilen JB, Li Z, Duetz WA, Smits TH, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58: 427-440. doi: 10.2516/ogst:2003026   DOI
33 Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): A review. J Environ Chem Eng 3: 462-473. doi: 10.1016/j.jece.2015.01.003   DOI
34 Pathak VM, Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4: 1-31. doi: 10.1186/s40643-017-0145-9   DOI
35 Furst MJ, Gran-Scheuch A, Aalbers FS, Fraaije MW (2019) Baeyer-Villiger monooxygenases: tunable oxidative biocatalysts. ACS Catal 9: 11207-11241. doi: 10.1021/acscatal.9b03396   DOI
36 Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72: 323-327. doi: 10.1016/S0141-3910(01)00027-1   DOI
37 Kirschner A, Altenbuchner J, Bornscheuer UT (2007) Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli. Appl Microbiol Biotechnol 75: 1095-1101. doi: 10.1007/s00253-007-0902-3   DOI
38 Leisch H, Morley K, Lau PC (2011) Baeyer-Villiger monooxygenases: more than just green chemistry. Chem Rev 111: 4165-4222. doi: 10.1021/cr1003437   DOI
39 Palfey BA, McDonald CA (2010) Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 493: 26-36. doi: 10.1016/j.abb.2009.11.028   DOI
40 Kamerbeek NM, Fraaije MW, Janssen DB (2004) Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases. Eur J Biochem 271: 2107-2116. doi: 10.1111/j.1432-1033.2004.04126.x   DOI
41 Schmidt S, Bornscheuer UT (2020) Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. In: The Enzymes, vol 47. Elsevier, pp 231-281. doi: 10.1016/bs.enz.2020.05.007   DOI
42 Malito E, Alfieri A, Fraaije MW, Mattevi A (2004) Crystal structure of a Baeyer-Villiger monooxygenase. Proc Natl Acad Sci USA 101: 13157-13162. doi: 10.1073/pnas.0404538101   DOI
43 Kelly DR, Knowles CJ, Mahdi JG, Taylor IN, Wright MA (1996) The enantioselective oxidation of sulfides to sulfoxides with Acinetobacter sp. NCIMB 9871, Pseudomonas sp. NCIMB 9872, Xanthobacter autotrophicus DSM 431 (NCIMB 10811) and the black yeast NV-2. Tetrahedron Asymmetry 7: 365-368. doi: 10.1016/0957-4166(96)00007-9   DOI
44 Kim S-H, Kim J-A, Im M-H (2020) Residual characteristics of pesticide in banana from international pesticide residue monitoring data. J Appl Biol Chem 63: 9-22. doi: 10.3839/jabc.2020.002   DOI
45 Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93: 561-584. doi: 10.1016/j.polymdegradstab.2007.11.008   DOI
46 Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64: 2578-2584. doi: 10.1128/AEM.64.7.2578-2584.1998   DOI
47 Franceschini S, van Beek HL, Pennetta A, Martinoli C, Fraaije MW, Mattevi A (2012) Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase. J Biol Chem 287: 22626-22634. doi: 10.1074/jbc.M112.372177   DOI
48 Orru R, Dudek HM, Martinoli C, Pazmino DET, Royant A, Weik M, Fraaije MW, Mattevi A (2011) Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization. J Biol Chem 286: 29284-29291. doi: 10.1074/jbc.M111.255075   DOI