Browse > Article

Development of Recombinant Pseudomonas putida Containing Homologous Styrene Monooxygenase Genes for the Production of (S)-Styrene Oxide  

Bae, Jong-Wan (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
Han, Ju-Hee (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
Park, Mi-So (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
Lee, Sun-Gu (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
Lee, Eun-Yeol (Department of Food Science and Technology, Kyungsung University)
Jeong, Yong-Joo (Division of Nano Science, Kook Min University)
Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, and Institute for Environmental Technology and Industry, Pusan National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.6, 2006 , pp. 530-537 More about this Journal
Abstract
Recently isolated, Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e. > 99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of the styAB gene that was used as host. This indicates that the copy number of styAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.
Keywords
styrene monooxygenase; (S)-styrene oxide; whole-cell biocatalyst; Pseudomonas putida SN1; styABC-deleted mutant; self-cloning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Van Beilen, J. B., W. A. Duetz, A. Schmid, and B. Witholt (2003) Practical issue in the application of oxygenases. Trends Biotechnol. 21: 170-177   DOI   ScienceOn
2 Panke, S., M. G. Wubbolts, A. Schmid, and B. Witholt (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69: 91-100   DOI   ScienceOn
3 Schweizer, H. P. (1991) Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97: 109-121   DOI   ScienceOn
4 Park, M. S., J. H. Han, S. S. Yoo, E. Y. Lee, S. G. Lee, and S. Park (2005) Degradation of styrene by a new isolate Pseudomonas putida SN1. Kor. J. Chem. Eng. 22: 418-424   DOI
5 Sambrook, J., E. F. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
6 Speer, B. S., N. B. Shoemaker, and A. A. Salyers (1992) Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 5: 387-399
7 Choi, W. J. and C. Y. Choi (2005) Production of chiral epoxides: epoxide hydrolase-catalyzed enantioselective hydrolysis. Biotechnol. Bioprocess Eng. 10: 167-179   과학기술학회마을   DOI   ScienceOn
8 Choi, K. O., S. H. Song, and Y. J. Yoo (2004) Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioprocess Eng. 9: 147-150   DOI   ScienceOn
9 Hartmans, S., M. J. van der Werf, and J. A. de Bont (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56: 1347-1351
10 O'Connor, K., C. M. Buckley, S. Hartmans, and A. D. Dobson (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 61: 544-548
11 Chang, H.-L. and L. Alvarez-Cohen (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol. Bioeng. 45: 440-449   DOI   ScienceOn
12 Panke, S., V. de Lorenzo, A. Kaiser, B. Witholt, and M. G. Wubbolts (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl. Environ. Microbiol. 65: 5619-5623
13 Kieboom, J., J. J. Dennis, J. A. M. de Bont, and G. J. Zylstra (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273: 85-91   DOI   ScienceOn
14 Otto, K., K. Hofstetter, M. Rothlisberger, B. Witholt, and A. Schmid (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J. Bacteriol. 186: 5292- 5302   DOI   ScienceOn
15 Padda, R. S., K. K. Pandey, S. Kaul, V. D. Nair, R. K. Jain, S. K. Basu, and T. Chakrabarti (2001) A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37. Microbiology 147: 2479- 2491
16 Lee, E. Y., J. M. Kang, and S. Park (2003) Evaluation of transformation capacity for degradation of ethylene chlorides by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 8: 309-312   DOI   ScienceOn
17 Kim, H. S., J.-H. Lee, S. Park, and E. Y. Lee (2004) Biocatalytic preparation of chiral epichlorohydrins using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis. Biotechnol. Bioprocess Eng. 9: 62-64   DOI   ScienceOn
18 Mooney, A., N. D. O'Leary, and A. D. W. Dobson (2006) Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl. Environ. Microbiol. 72: 1302-1309   DOI   ScienceOn
19 Park, M. S., J. W. Bae, J. H. Han, E. Y. Lee, S.-G. Lee, and S. Park (2006) Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J. Microbiol. Biotechnol. 16: 1032-1040   과학기술학회마을
20 Panke, S., M. Held, M. G. Wubbolts, B. Witholt, and A. Schmid (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol. Bioeng. 80: 33-41   DOI   ScienceOn
21 Kang, J., E. Y. Lee, and S. Park (2001) Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations methane or methanol. Biotechnol. Lett. 23: 1877-1882   DOI   ScienceOn
22 Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. de Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415   DOI   ScienceOn
23 Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S.-G. Lee, and S. Park (2006) Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1. Enzyme Microb. Technol. 39: 1264-1269   DOI   ScienceOn
24 Beltrametti, F., A. M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl. Environ. Microbiol. 63: 2232-2239
25 Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64: 2032-2043
26 Furuhashi, K. (1992) Biological routes to optically active epoxides. pp. 167-186. In: A. N. Collins, G. N. Sheldrake, and J. Crosby (eds.). Chirality in Industry. Wiley, Chichester, UK