• 제목/요약/키워드: monodansylcadaverine (MDC)

검색결과 10건 처리시간 0.023초

A Role of Tissue Transglutaminase in the Germinal Vesicle Breakdown of Mouse Oocytes

  • Kim, Sung-Woo;Park, Jin-Ki;Lee, Yun-Keun;Lee, Poongyeon;Kim, Jung-Ho;Han, Joo-Hee;Park, Chun-Gyu;Ha, Kwon-Soo;Chang, Won-Kyong
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.61-61
    • /
    • 2003
  • We have investigated the novel function of tissue transglutaminase (tTG) in the germinal vesicle breakdown (GVBD) of mouse oocyte. tTG was identified in ooplasm and germinal vesicle by immunostaining assay. Spontaneous maturation of the oocytes elevated in situ activity of tTG by over 2.5 fold at 3 hr, which was determined by a confocal microscopic assay. However, incubation with monodansylcadaverine (MDC), a tTG inhibitor, blocked the activation of tTG. The possible role of tTG in GVBD was investigated by the use of two tTG inhibitors, MDC and cystamine. MDC largely inhibited the GVBD by a concentration dependent manner. GV-stage oocytes were matured to the GVBD stage by 78% at 3 hr in BWW culture medium. However, in the oocytes incubated with MDC for 3 hr, the GVBD rates were 43 and 11% by 50 and 100 mM, respectively. MDC also blocked the entry of 70 kDa TRITC-dextran from the ooplasm to the compartment of germinal vesicle, indicating a possible inhibition of nuclear pore disassembly by MDC. The role of tTG in GVBD was further investigated by microinjection with cystamine. The control oocytes, injected with DPBS, showed about 80 % of GVBD at 3 hr. But the oocytes injected with cystamine showed 15% of GVBD at 3 hr and a little higher rate at 6 hr. In addition, the inhibition of GVBD maturation by MDC was reversible by washing. These results suggested that tTG was involved in the early event of mouse oocyte maturation

  • PDF

에탄올에 의해 추출한 황금이 구강암 세포에서 나타나는 자가포식작용 (Effect of autophagy in human tongue squamous cell carcinoma SCC 25 cells from Scutellariae Radix by ethanol extract)

  • 최별보라
    • 한국치위생학회지
    • /
    • 제14권2호
    • /
    • pp.287-292
    • /
    • 2014
  • Objectives : The purpose of the study is to examine the cell growth effect and autophagy effect of Scutellariae Radix by ethanol extract in SCC 25 cells. Methods : Cell growth inhibitory effect and autophagy induced by Scutellariae Radix were confirmed by WST-1 assay, monodansylcadaverine(MDC) stain, and flow cytometry by acridine orange(AO) stain. Results : The Scutellariae Radix treatment decreased the cell proliferation in a dose and time dependent manner. Scutellariae Radix has anticancer effects that autophagic vacuoles were apparent by MDC and AO staining in SCC 25 cells. Conclusions : Scutellariae Radix showed anticancer activity against SCC 25 cells via autophagy. The data provided the possibility that Scutellariae Radix may potentially contribute to oral cancer treatment.

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.

Inhibition of Transglutaminase and Microbial Transglutaminase Activity by Garlic

  • Lee, Nam-Hyouck;Takeuchi, Atsuyoshi;Konno, Kunihiko
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.223-227
    • /
    • 2007
  • Ground garlic inhibited the cross-linking reaction of myosin and incorporation of monodansylcadaverine (MDC) in salted Alaska pollack surimi catalyzed by transglutaminase (TGase). The component responsible for the inhibition was a thermostable, low molecular weight compound. The component also inhibited microbial transglutaminase (MTGase). The inhibition by garlic was reversibly recovered upon addition of 2-mercaptoethanol. The inhibitory component was therefore hypothesized to contain sulfhydryl groups within its structure. Alliin itself did not inhibit the cross-linking reaction. However, the addition of alliin together with garlic increased the inhibition. This result suggested that compounds derived from alliin was responsible for the inhibition of TGase activity.

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice

  • Shin, Jun-Hye;Yoshimoto, Kohki;Ohsumi, Yoshinori;Jeon, Jong-seong;An, Gynheung
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.67-74
    • /
    • 2009
  • Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.

Sulfasalazine Induces Autophagic Cell Death in Oral Cancer Cells via Akt and ERK Pathways

  • Han, Hye-Yeon;Kim, Hyungwoo;Jeong, Sung-Hee;Lim, Do-Seon;Ryu, Mi Heon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6939-6944
    • /
    • 2014
  • Sulfasalazine (SSZ) is an anti-inflammatory drug that has been used to treat inflammatory bowel disease and rheumatoid arthritis for decades. Recently, some reports have suggested that SSZ also has anti-cancer properties against human tumors. However, little is known about the effects of SSZ on oral cancer. The aim of this study was to investigate the anti-cancer effects of SSZ in oral squamous cell carcinoma (OSCC) cells and to elucidate the mechanisms involved. The authors investigated the anti-proliferative effect of SSZ using the MTT method in HSC-4 cells (an OSCC cell line). Cell cycle analysis, acidic vesicular organelle (AVO) staining, monodansylcadaverine (MDC) staining and Western blotting were also conducted to investigate the cytotoxic mechanism of SSZ. SSZ significantly inhibited the proliferation of HSC-4 cells in a dose-dependent manner. In addition, SSZ induced autophagic cell death, increased microtubule-associated protein 1 light chain (MAP1-LC; also known as LC) 3-II levels, as well as induced punctate AVO and MDC staining, resulted in autophagic cell death. Furthermore, these observations were accompanied by the inhibition of the Akt pathway and the activation of ERK pathway. These results suggest that SSZ promotes autophagic cell death via Akt and ERK pathways and has chemotherapeutic potential for the treatment of oral cancer.

Oleanolic acid induced autophagic cell death in hepatocellular carcinoma cells via PI3K/Akt/mTOR and ROS-dependent pathway

  • Shi, Yang;Song, Qingwei;Hu, Dianhe;Zhuang, Xiaohu;Yu, Shengcai;Teng, Dacai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.237-243
    • /
    • 2016
  • Oleanolic acid (OA) has a wide variety of bioactivities such as hepatoprotective, anti-inflammatory and anti-cancer activity and is used for medicinal purposes in many Asian countries. In the present study, the effect of OA on induction of autophagy in human hepatocellular carcinoma HepG2 and SMC7721 cells and the related mechanisms were investigated. MTT assay showed that OA significantly inhibited HepG2 and SMC7721 cells growth. OA treatment enhanced formation of autophagic vacuoles as revealed by monodansylcadaverine (MDC) staining. At the same time, increasing punctuate distribution of microtubule-associated protein 1 light chain 3 (LC3) and an increasing ratio of LC3-II to LC3-I were also triggered by OA incubation. In addition, OA-induced cell death was significantly inhibited by autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) pretreatment. And we found out that OA can suppress the PI3K/Akt1/mTOR signaling pathway. Furthermore, our data suggested that OA-triggered autophagy was ROS-dependent as demonstrated by elevated cellular ROS levels by OA treatment. When ROS was cleared by N-acetylcysteine (NAC), OA-induced LC3-II convertsion and cell death were all reversed. Taken together, our results suggest that OA exerts anticancer effect via autophagic cell death in hepatocellular carcinoma.

Autophagy Inhibition Sensitizes Cisplatin Cytotoxicity in Human Gastric Cancer Cell Line Sgc7901

  • Zhang, Hui-Qing;He, Bo;Fang, Nian;Lu, Shan;Liao, Yu-Qian;Wan, Yi-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4685-4688
    • /
    • 2013
  • We aimed to investigate the mechanism and effects of autophagy on cisplatin (DDP)-induced apoptosis in human gastric cancer cell line SGC7901. After SGC7901 cells were treated with DDP and/or chloroquine, cell proliferation was measured using MTT assay; cell apoptosis was determined by flow cytometry; autophagy and apotosis-related proteins expression were detected by Western blot; and quantitative analysis of autophagy after monodansylcadaverine (MDC) staining was performed using fluorescence microscopy. We found after treatment with 5 mg/L DDP for 24 h, the rates of cell apoptosis were ($21.07{\pm}2.12$)%. Autophagy, characterized by an increase in the number of autophagic vesicles and the level of LC3-II protein was observed in cells treated with DDP. After inhibition of autophagy by chloroquine, the rates of cell apoptosis were increased to ($30.16{\pm}3.54$)%, and the level of Caspase-3 and P53 protein were increased, and Bcl-2 protein was decreased. Therefore, autophagy protects human gastric cancer cell line SGC7901 against DDP-induced apoptosis, inhibition of autophagy can promote apoptosis, and combination therapy with DDP and chloroquine may be a promising therapeutic strategy for gastric cancer.

NaF-induced Autophagy on SCC25 Human Tongue Squamous Cell Carcinoma Cells

  • Kang, Jin-Mo;Lee, Bo-Young;Kim, In-Ryoung;Kim, Yong-Ho;Yu, Su-Bin;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제39권4호
    • /
    • pp.193-199
    • /
    • 2014
  • Fluoride has been accepted as an important material for oral health and is widely used to prevent dental caries in dentistry. However, its safety is still questioned by some. Autophagy has been implicated in cancer cell survival and death, and may play an important role in oral cancer. This study was undertaken to examine whether sodium fluoride (NaF) modulates autophagy in SCC25 human tongue squamous cell carcinoma cells. NaF demonstrated anticancer activity via autophagic and apoptotic cell death. Autophagic vacuoles were detectable using observed to form by monodansylcadaverine (MDC) and acridine orange (AO). Analysis of NaF-treated SCC25 cells for the presence of biochemical markers revealed direct effects on the conversion of LC-3II, degradation of p62/SQSTM1, cleavage formation of ATG5 and Beclin-1, and caspase activation. NaF-induced cell death was suppressed by the autophagy inhibitor 3-methyladenine (3-MA). NaF-induced autophagy was confirmed as a pro-death signal in SCC25 cells. These results implicate NaF as a novel anticancer compound for oral cancer therapy.

The Role of HS-1200 Induced Autophagy in Oral Cancer Cells

  • Jang, Nam-Mi;Oh, Sang-Hun;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.93-100
    • /
    • 2013
  • Bile acids and synthetic bile acid derivatives induce apoptosis in various kinds of cancer cells and thus have anticancer properties. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, few data are available regarding the role of autophagy in oral cancers and there have been no reports of autophagic cell death in OSCCs (oral squamous cell carcinoma cells) induced by HS-1200, a synthetic bile acid derivative. We thus examine whether HS-1200 modulates autophagy in OSCCs. Our findings indicate that HS-1200 has anticancer effects in OSCCs, and we observed in these cells that autophagic vacuoles were visible by monodansylcadaverine (MDC)and acridine orange staining. When we analyzed HS-1200-treated OSCC cells for the presence of biochemical markers, we observed that this treatment directly affects the conversion of LC-3II, degradation of p62/SQSTM1 and full-length beclin-1, cleavage of ATG5-12 and the activation of caspase. An autophagy inhibitor suppressed HS-1200-induced cell death in OSCCs, confirming that autophagy acts as a pro-death signal in these cells. Furthermore, HS-1200 shows anticancer activity against OSCCs via both autophagy and apoptosis. Our current findings suggest that HS-1200 may potentially contribute to oral cancer treatment and thus provide useful information for the future development of a new therapeutic agent.