DOI QR코드

DOI QR Code

NaF-induced Autophagy on SCC25 Human Tongue Squamous Cell Carcinoma Cells

  • Kang, Jin-Mo (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Lee, Bo-Young (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, In-Ryoung (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Kim, Yong-Ho (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Yu, Su-Bin (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Park, Hae-Ryoun (Department of Oral Pathology, School of Dentistry, Pusan National University) ;
  • Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University)
  • Received : 2014.10.15
  • Accepted : 2014.11.24
  • Published : 2014.12.31

Abstract

Fluoride has been accepted as an important material for oral health and is widely used to prevent dental caries in dentistry. However, its safety is still questioned by some. Autophagy has been implicated in cancer cell survival and death, and may play an important role in oral cancer. This study was undertaken to examine whether sodium fluoride (NaF) modulates autophagy in SCC25 human tongue squamous cell carcinoma cells. NaF demonstrated anticancer activity via autophagic and apoptotic cell death. Autophagic vacuoles were detectable using observed to form by monodansylcadaverine (MDC) and acridine orange (AO). Analysis of NaF-treated SCC25 cells for the presence of biochemical markers revealed direct effects on the conversion of LC-3II, degradation of p62/SQSTM1, cleavage formation of ATG5 and Beclin-1, and caspase activation. NaF-induced cell death was suppressed by the autophagy inhibitor 3-methyladenine (3-MA). NaF-induced autophagy was confirmed as a pro-death signal in SCC25 cells. These results implicate NaF as a novel anticancer compound for oral cancer therapy.

Keywords

References

  1. Ozsvath D. Fluoride and environmental health: a review. Rev Environ Sci Biotechnol. 2009;8:59-79. https://doi.org/10.1007/s11157-008-9136-9
  2. Petersen PE, Lennon MA. Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community Dent Oral Epidemiol. 2004;32:319-21. https://doi.org/10.1111/j.1600-0528.2004.00175.x
  3. Li Y. Fluoride: safety issues. J Indiana Dent Assoc. 1993;72:22-26.
  4. Lee JH, Jung JY, Jeong YJ, Park JH, Yang KH, Choi NK, Kim SH, Kim WJ. Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts. Toxicology. 2008;243:340-347. https://doi.org/10.1016/j.tox.2007.10.026
  5. Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;12 (Suppl 2):1542-1552. https://doi.org/10.1038/sj.cdd.4401765
  6. Codogno P. Autophagy in cell survival and death. J Soc Biol. 2005;199:233-241. https://doi.org/10.1051/jbio:2005024
  7. Zhang JQ, Li YM, Chen XH, Liu T, Chen YT, He WT, Zhang QB, Liu SY. Autophagy is involved in anticancer effects of matrine on SGC-7901 human gastric cancer cells. Oncol Rep. 2011;26:115-124.
  8. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011;334:1573-1577. https://doi.org/10.1126/science.1208347
  9. Giannopoulou E, Antonacopoulou A, Matsouka P, Kalofonos HP. Autophagy: Novel Action of Panitumumab in Colon Cancer. Anticancer Res. 2009;29:5077-5082.
  10. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891-2906. https://doi.org/10.1038/sj.onc.1207521
  11. Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX. Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett. 2012;320:171-179. https://doi.org/10.1016/j.canlet.2012.03.002
  12. Clayman GL, Ebihara S, Terada M, Mukai K, Goepfert H. Report of the Tenth International Symposium of the Foundation for Promotion of Cancer Research: Basic and clinical research in head and neck cancer. Jpn J Clin Oncol. 1997;27:361-368. https://doi.org/10.1093/jjco/27.5.361
  13. Shen J, Huang CH, Jiang L, Gao F, Wang Z, Zhang YY, Bai JP, Zhou HM, Chen QM. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Biochem Pharmacol. 2007;73:1901-1909. https://doi.org/10.1016/j.bcp.2007.03.009
  14. Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H. Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009;64:1115-1122. https://doi.org/10.1007/s00280-009-0969-x
  15. Bell RB, Kademani D, Homer L, Dierks EJ, Potter BE. Tongue cancer: Is there a difference in survival compared with other subsites in the oral cavity? J Oral Maxil Surg. 2007;65:229-236. https://doi.org/10.1016/j.joms.2005.11.094
  16. Lo WL, Kao SY, Chi LY, Wong YK, Chang RCS. Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: Factors affecting survival. J Oral Maxil Surg. 2003;61:751-758. https://doi.org/10.1016/S0278-2391(03)00149-6
  17. Shintani S, Li CN, Mihara M, Klosek SK, Terakado N, Hino S, Hamakawa H. Anti-tumor effect of radiation response by combined treatment with angiogenesis inhibitor, TNP-470, in oral squamous cell carcinoma. Oral Oncol. 2006;42:66-72. https://doi.org/10.1016/j.ooe.2005.09.002
  18. Hansen KJ, Clemen LA, Ellefson ME, Johnson HO. Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol. 2001;35:766-770. https://doi.org/10.1021/es001489z
  19. Song JS, Lee HY, Lee E, Hwang HJ, Kim JH. Cytotoxicity and apoptosis induction of sodium fluoride in human promyelocytic leukemia (HL-60) cells. Environ Toxicol Phar. 2002;11:85-91. https://doi.org/10.1016/S1382-6689(01)00108-9
  20. Anuradha CD, Kanno S, Hirano S. Fluoride induces apoptosis by caspase-3 activation in human leukemia HL-60 cells. Arch Toxicol. 2000;74:226-230. https://doi.org/10.1007/s002040000132
  21. Anuradha CD, Kanno S, Hirano S. Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radical Bio Med. 2001;31:367-373. https://doi.org/10.1016/S0891-5849(01)00591-3
  22. Otsuki S, Morshed S, Chowdhury S, Takayama F, Satoh T, Hashimoto K, Sugiyama K, Amano O, Yasui T, Yokote Y. Possible link between glycolysis and apoptosis induced by sodium fluoride. J Dent Res. 2005;84:919-923. https://doi.org/10.1177/154405910508401009
  23. Suzuki M, Bartlett JD. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. Biochim Biophys Acta. 2014;1842:245-255. https://doi.org/10.1016/j.bbadis.2013.11.023
  24. Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120:237-248. https://doi.org/10.1016/j.cell.2004.11.046
  25. Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death Differ 2005;12:1528-1534. https://doi.org/10.1038/sj.cdd.4401777
  26. Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115:2679-2688. https://doi.org/10.1172/JCI26390
  27. Chen LH, Loong CC, Su TL, Lee YJ, Chu PM, Tsai ML, Tsai PH, Tu PH, Chi CW, Lee HC, Chiou SH. Autophagy inhibition enhances apoptosis triggered by BO-1051, an N-mustard derivative, and involves the ATM signaling pathway. Biochem Pharmacol. 2011;81:594-605. https://doi.org/10.1016/j.bcp.2010.12.011
  28. Ichimura Y, Komatsu M. Selective degradation of p62 by autophagy. Semin Immunopathol. 2010;32:431-436. https://doi.org/10.1007/s00281-010-0220-1
  29. Ichimura Y, Kominami E, Tanaka K, Komatsu M. Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy 2008;4:1063-1066. https://doi.org/10.4161/auto.6826
  30. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131-24145. https://doi.org/10.1074/jbc.M702824200
  31. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, Ishii KJ, Kawai T, Akira S, Suzuki K, Okuda K. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA. 2007;104:14050-14055. https://doi.org/10.1073/pnas.0704014104
  32. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F. Ambra1 regulates autophagy and development of the nervous system. Nature 2007;447:1121-1125.
  33. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclinphosphatidylinositol 3-kinase complex functions at the trans-Golgi network. Embo Rep. 2001;2:330-335. https://doi.org/10.1093/embo-reports/kve061
  34. Sun QM, Fan WL, Zhong Q. Regulation of Beclin 1 in autophagy. Autophagy 2009;5:713-716. https://doi.org/10.4161/auto.5.5.8524
  35. Betin VMS, Lane JD. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci. 2009;122:2554-2566. https://doi.org/10.1242/jcs.046250
  36. Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC. Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett. 2009;274:95-100. https://doi.org/10.1016/j.canlet.2008.09.004
  37. Djavaheri-Mergny M, Maiuri MC, Kroemer G. Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1 Oncogene 2010;29:1717-1719. https://doi.org/10.1038/onc.2009.519
  38. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010;1:e18. https://doi.org/10.1038/cddis.2009.16