Browse > Article
http://dx.doi.org/10.1007/s10059-009-0006-2

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice  

Shin, Jun-Hye (National Research Laboratory of Plant Functional Genomics, POSTECH Biotech Center, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Yoshimoto, Kohki (Plant Science Center, The Institute of Physical and Chemical Research)
Ohsumi, Yoshinori (Department of Cell Biology, National Institute for Basic Biology)
Jeon, Jong-seong (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University)
An, Gynheung (National Research Laboratory of Plant Functional Genomics, POSTECH Biotech Center, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Abstract
Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.
Keywords
ATG10; autophagy; methyl viologen (MV); monodansylcadaverine (MDC); oxidative stress; rice;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Banergee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457   DOI   PUBMED   ScienceOn
2 Doelling, J.H., Walker, J.M., Friedman, E.M., Thompson, A.R., and Vierstra, R.D. (2002). The APG8/12-activating enzyme $APG_{7}$ is required for proper nutrient recycling and senescence in Arabidopsis thaliana J. Biol. Chem. 277, 33105-33114   DOI   PUBMED   ScienceOn
3 Fujiki, Y., Yoshimoto, K., and Ohsumi, Y. (2007). An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 1132-1139   DOI   PUBMED   ScienceOn
4 Han, M.J., Jung, K.H., Yi, G., Lee, D.Y., and An, G. (2006).Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol. 47, 1457-1472   DOI   PUBMED   ScienceOn
5 Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193   DOI   PUBMED   ScienceOn
6 Kramer, E.M., and Bennett, M.J. (2006). Auxin transport: a field in flux. Trends Plant Sci. 11, 382-386   DOI   PUBMED   ScienceOn
7 Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R. (1990). Determina-tion of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186, 464-478   DOI
8 Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces. Gene 192, 245-250   DOI   ScienceOn
9 Patel, S., Caplan, J., and Dinesh-Kumar, S.P. (2006). Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol. 9, 391-396   DOI   PUBMED   ScienceOn
10 Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z., and Galili, G. (2005). The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J. Exp. Bot. 56, 2839-2849   DOI   PUBMED   ScienceOn
11 Tanida, I., Mitsushima, N., Kiyooka, M., Ohsumi, M., Ueno, T., Ohsumi, Y., and Kominami, E. (1999). APG7P/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367-1379   DOI   PUBMED
12 Tsukda, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174   DOI   ScienceOn
13 Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007a). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 143, 291-299   DOI   PUBMED   ScienceOn
14 Kim, Y.H., Song, T.B., Kim, C.H., Cho, M.K., Kim, K.M., Yang, S.Y., Ahn, B.W., and Joo, E.H. (2005). Lipid peroxidation and prooxidative activity stimulating the oxidative modification of proteins in the uterine venous plasma of preeclampsia. Korean J. Fetal. Med. 1, 23-30
15 Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994). Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903-913   DOI   PUBMED
16 Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Kim, C., and An, G. (2000b). Tissue-preferential expression of a rice $\alpha$-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol. 123, 1005-1014   DOI   PUBMED
17 Shao, Y., Gao, Z., Feldman, T., and Jiang, X. (2007). Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 3, 10-16   DOI   PUBMED
18 Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep. 33, 273-278   DOI   PUBMED
19 Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The ATG12-ATG5 conjugate has a novel $E_{3}$-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298-37302   DOI   ScienceOn
20 Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694-1696   DOI   PUBMED   ScienceOn
21 Contento, A.L., Xiong, Y., and Bassham, D. (2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 42, 598-608   DOI   PUBMED   ScienceOn
22 Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473-497   DOI
23 Kametaka, S., Matsuura, A., Wada, Y., and Ohsumi, Y. (1996). Structural and functional analyses of ^mdR, a gene involved in autophagy in yeast. Gene 178, 139-143   DOI   ScienceOn
24 Kopitz, J., Kisen, G.O., Gordon, P.B., Bohley, P., and Seglen, P.O. (1990). Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J. Cell Biol. 111, 941-953   DOI   PUBMED   ScienceOn
25 Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M., and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398   DOI   PUBMED   ScienceOn
26 Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254   DOI   ScienceOn
27 Xiong, Y., Contento, A.L., and Bassham, D.C. (2007b). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3, 257-258   DOI   PUBMED
28 Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983   DOI   PUBMED   ScienceOn
29 Biederbick, A., Kern, H.F., and Elsasser, H.P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol. 66, 3-14   PUBMED
30 Hattori, T., Terada, T., and Hamasuna, S.T. (1994). Sequence and functional analyses of the rice gene homologous to the maize Vp1. Plant Mol. Biol. 24, 805-810   DOI   PUBMED
31 Kwon, S.I., and Park, O.K. (2008). Autophagy in plants. J. Plant Biol. 51, 313-320   DOI   ScienceOn
32 Phillips, A.R., Suttangkakul, A., and Vierstra, R.D. (2008). The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178, 1339-1353   DOI   PUBMED   ScienceOn
33 Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577   DOI   PUBMED   ScienceOn
34 Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinasedeficient mutants and conditions for its induction. J. Cell Biol. 119, 301-311   DOI   PUBMED   ScienceOn
35 Mortimore, G.E., Hutson, N.J., and Surmacz, C.A. (1983). Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. Natl. Acad. Sci. USA 80, 2179-2183   DOI
36 Shintani, T., Mizushima, N., Ogawa, Y., Matsuura, A., Noda, T., and Ohsumi, Y. (1999). Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18, 5234-5241   DOI   PUBMED   ScienceOn
37 Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Cur. Opin. Plant Biol. 10, 1-7   DOI   PUBMED   ScienceOn
38 Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185-209   DOI   PUBMED   ScienceOn
39 Jung, K.H., Han, M.J., Lee, D.Y., Lee, Y.S., Schreiber, L., Franke, R., Faust, A., Yephremov, A., Saedler, H., Kim, Y.W., et al. (2006). Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18, 3015-3032   DOI   PUBMED   ScienceOn
40 Ryu, C.H., You, J.H., Kang, H.G., Hur, J., Kim, Y.H., Han, M.J., An, K., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA gene tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489-502   DOI   PUBMED   ScienceOn
41 Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S., and Stadtman, E.R. (1987). Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491   PUBMED
42 Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., and Moriyasu, Y. (2006). AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 47, 1641-1652   DOI   PUBMED   ScienceOn
43 Moriyasu, Y., and Ohsumi, Y. (1996). Autophagy in tobacco suspen- sioncultured cells in response to sucrose starvation. Plant Physiol. 111, 1233-1241   DOI
44 Schworer, C.M., and Mortimore, G.E. (1979). Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids. Proc. Natl. Acad. Sci. USA 76, 3169-3173   DOI   ScienceOn
45 Thompson, A.R., Doelling, J.H., Suttangkakul, A., and Vierstra, R.D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097-2110   DOI   PUBMED   ScienceOn
46 Woo, Y.M., Park, H.J., Su'udi, M., Yang, J.I., Park, J.J., Back, K., Park, Y.M., and An, G. (2007). Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65, 125-136   DOI   PUBMED
47 Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2-11   DOI   PUBMED
48 Funakoshi, T., Matsuura, A., Noda, T., and Ohsumi, Y. (1997). Analysis of APG13 gene involved in autophagy in yeast, Saccharomyces Gene 192, 207-213   DOI   ScienceOn
49 Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Lee, S.Y., Yang, K., et al. (2000a). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570   DOI   PUBMED   ScienceOn
50 Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132   DOI   PUBMED   ScienceOn
51 An, S., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047   DOI   PUBMED   ScienceOn