• 제목/요약/키워드: moment analysis

검색결과 3,518건 처리시간 0.029초

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

용접 철골모멘트골조의 비선형 동적 연쇄붕괴해석을 위한 병렬 소성힌지 모델의 개발 (A Parallel Axial-Flexural Hinge Model for Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames)

  • 이철호;김선웅;이경구
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.155-164
    • /
    • 2009
  • 본 논문에서는 용접철골모멘트골조의 비선형 동적 연쇄붕괴 해석을 위해 인장-휨 거동을 반영한 효율적인 병렬 소성힌지를 제안하였다. 본 목적을 위해 재료적/기하학적 비선형 유한요소해석을 이용한 변수연구를 통해 기둥이 손실된 2경간 보의 항복후 휨거동과 모멘트-축인장력 상호작용을 살펴보았다. 유한요소해석결과를 토대로 보의 모멘트-축인장력 상호작용 관계를 일련의 선형으로 근사화한 소성힌지모델을 제안하고, 이를 OpenSees 프로그램에 적용하여 용접철골모멘트골조의 비선형 동적 연쇄붕괴해석을 수행하였다. 비선형 동적 유한요소해석을 통하여 본 연구에서 제안한 힌지모델의 효율성과 정확도를 검증하였다. 또한 본 연구 결과는 연쇄붕괴 해석 및 설계에 적절한 현수작용효과의 포함여부가 중요함을 보여준다.

부정정 베어링-축계의 해석 및 볼베어링의 거동예측 (Analysis of Statically Indeterminate Bearing-Shaft System Prediction of the Behavior of Ball Bearing)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • 제10권1호
    • /
    • pp.62-68
    • /
    • 1994
  • The analysis of statically indeterminate bearing-shaft system was investigated. The moment loads and misalignment angles which were induced in the ball bearings were determined, and the influence of span length of this system on the moment loads and fatigue lives was identified. The sliding and spinning speeds between balls and raceways which affected the performance of ball bearing evaluated. The equation to estimate the cage speed of ball bearing under moment loads was proposed. This equation had been verified by the test results of measuring of cage speed, which was useful to the prediction of ball bearing under moment loads.

기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구 (Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns)

  • 장원석;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향 (The Changes of Joint Moments According to Weight Loading Gait on Normal Adults)

  • 정형국
    • 대한물리치료과학회지
    • /
    • 제10권2호
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

모멘트 방정식 방법에 의한 횡요 운동 방정식의 램덤 해석 (Random Analysis of Rolling Equation of Motion of Ships Based on Moment Equation Method)

  • 배준홍;권순홍;하동대
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.41-45
    • /
    • 1992
  • In this paper an application technique of moment equation method to solution of nonlinear rolling equation of motion of ships is investigated. The exciting moment in the equation of rolling motion of ships is described as non-white noise. This non-white exciting moment is generated through use of a shaping filter. These coupled equations are used to generate moment equations. The nonstationary responses of the nonlinear system are obtained. The results are compared with those of a linear system.

  • PDF

PSC 2경간 연속화에 따른 구속모멘트의 시간의존해석 (The time-dependent analysis of restraint moment in continous PSC bridge)

  • 구민세;최인식;박찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.417-424
    • /
    • 2001
  • It is very important to know the magnitude of the restraint moment which is appeared at the inner-support of the continuous PSC girder. The Age-adjusted Effective Modulus Method(AEMM) is used to get the magnitude of the restraint moment for the purpose of the time-dependent analysis of the concrete. The important factors for computing the restraint moment, the creep coefficient and the shrinkage strain are computed by comparing Korean specification with AC1209. The restrain moment is created by the individual continuity load. The main purpose of this paper is ensuring the safety of structure by acquiring the time-dependent stress acting on the concrete because the process of construction is getting difficult due to the advance of technology. The negative moment at the inner-support is decreased about 55% by introducing the process of making the continuous bridge relatively early.

  • PDF

다영역 모델의 해석을 위한 공간모멘트법의 적용 (Application of the Method of Spatial Moment for Analysis the Multi-Region Model)

  • 이덕주
    • 한국농공학회지
    • /
    • 제42권2호
    • /
    • pp.78-85
    • /
    • 2000
  • The moment equations of the concentration distribution for the multi-region model are derived using the method of moment. The method originally devised by Aris is to obtain the concentration moments satisfying a given PDE (Partial Differential Equation. The method of moment is used to obtain the first five moments (0th to 4to) that satisfy the model PDE. Each moment of the concentration distribution for the model equation is plotted for the dimensionless time and gave similar results except the skewness and the kurtosis. The results of the analysis show the physical meaning of each moment. The comparisons with the number of regions or the global interaction coefficient give a possibility to determine the parameters of the multi-region model with the analytical concepts.

  • PDF

각형강관 기둥을 가진 철골모멘트 접합부의 변형능력 (Deformation Capacity of Steel Moment Connections with RHS Column)

  • 김영주;오상훈;유홍식
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF

Use of UHPC slab for continuous composite steel-concrete girders

  • Sharif, Alfarabi M.;Assi, Nizar A.;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.321-332
    • /
    • 2020
  • The loss of composite action at the hogging moment zone for a continuous composite girder reduces the girder stiffness and strength. This paper presents an experimental investigation of the use of an ultra-high performance concrete (UHPC) slab at the hogging moment zone and a normal concrete (NC) slab at the sagging moment zone. The testing was conducted to verify the level of loading at which composite action is maintained at the hogging moment zone. Four two-span continuous composite girders were tested. The thickness of the UHPC varied between a half and a full depth of slab. The degree of shear connection at the hogging moment zone varied between full and partial. The experimental results confirmed the effectiveness of the UHPC slab to enhance the girder stiffness and maintain the composite action at the hogging moment zone at a load level much higher than the upper service load limit. To a lesser degree enhanced performance was also noted for the smaller thickness of the UHPC slab and partial shear connection at the hogging moment zone. Plastic analysis was conducted to evaluate the ultimate capacity of the girder which yielded a conservative estimation. Finite element (FE) modeling evaluated the girder performance numerically and yielded satisfactory results. The results indicated that composite action at the hogging moment zone is maintained for the degree of shear connection taken as 50% of the full composite action and use of UHPC as half depth of slab thickness.