• Title/Summary/Keyword: molten salt film

Search Result 10, Processing Time 0.031 seconds

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 Al-Y 코팅한 Haynes 263의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.

Pulse Electrodeposition of Polycrystalline Si Film in Molten CaCl2 Containing SiO2 Nanoparticles

  • Taeho Lim;Yeosol Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.326-332
    • /
    • 2023
  • The high cost of Si-based solar cells remains a substantial challenge to their widespread adoption. To address this issue, it is essential to reduce the production cost of solar-grade Si, which is used as raw material. One approach to achieve this is Si electrodeposition in molten salts containing Si sources, such as SiO2. In this study, we present the pulse electrodeposition of Si in molten CaCl2 containing SiO2 nanoparticles. Theoretically, SiO2 nanoparticles with a diameter of less than 20 nm in molten CaCl2 at 850℃ have a comparable diffusion coefficient with that of ions in aqueous solutions at room temperature. However, we observed a slower-than-expected diffusion of the SiO2 nanoparticles, probably because of their tendency to aggregate in the molten CaCl2. This led to the formation of a non-uniform Si film with low current efficiency during direct current electrodeposition. We overcome this issue using pulse electrodeposition, which enabled the facile supplementation of SiO2 nanoparticles to the substrate. This approach produced a uniform and thick electrodeposited Si film. Our results demonstrate an efficient method for Si electrodeposition in molten CaCl2 containing SiO2 nanoparticles, which can contribute to a reduction in production cost of solar-grade Si.

CRYSTAL TRANSITION PROCESS DURING POST-BREAKDOWN IN THE MOLTEN SALT

  • Han, S.H.;Thompson, G.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.440-443
    • /
    • 1999
  • The morphology and composition of anodic films, formed on aluminium at various current densities, in the range 1-$100{\;}Am^{-2}$, in the molten bisulphate melt at different temperatures (418-498K), have been studied using transmission electron microscopy of ultramicrotomed film sections, and ion beam thinned films. From the structural analysis of the electron diffraction patterns taken from the ultramicrotomed sections and ion beam thinned films, it can be concluded that the crystal modification process from ${\gamma}-Al_2O_3{\;}to{\;}{\alpha}-Al_2O_3$ proceeds in the following steps : (equation omitted)

  • PDF

Effects of Salt Flux and Alloying Elements on the Coalescence Behaviour of Aluminum Droplets (알루미늄 Droplets 합체거동에 미치는 Salt Flux 및 합금원소 첨가의 영향)

  • Kim, Ye-Sik;Yoon, Eui-Pak;Kim, Ki-Tae;Jung, Woon-Jae;Jo, Duk-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • The remelting for recycling or thin aluminum scrap, such as aluminum chip generally involves melting of these pieces submerged in molten salt flux. In this study, the effects of salt flux compositions and alloying elements on the aluminum dropletscoalescence and oxide film removal were studied in 99.8%Al, Al-1.01%Cu, Al-1.03%Si, and Al-1.38%Mg alloys as a function of holding time at $740^{\circ}C$ Salt fluxes based on NaCl-KCl(1:1) with addition of 5wt.% fluorides(NaF, $Na_3AlF_6$, $CaF_2$) or 5 wt.% chloride($MgCl_2$, $AlCl_3$) were used. The experimental results show that NaCl-KCl(1:1) with addition of 5 wt.% fluorides exhibits better coalescence ability than that with chlorides. The oxide film is not removed by NaCl-KCl(1:1) with addition of 5 wt.%chlorides, while it is removed by NaCl-KCl(1:1) with addition of 5 wt.% fluorides. The aluminum droplets coalescence and oxide film removal by salt fluxes are related to interfacial tension tension between metal and salt flux.

  • PDF

ELECTRICAL BREAKDOWN INITIATION OF ANODIC FILMS DURING ANODIZING IN MOLTEN BISULPHATE MELT

  • Han, S.H.;Thompson, G.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.341-343
    • /
    • 1999
  • The morphology and composition of anodic films, formed on aluminium at various current densities, in the range $1-100{\;}Am^{-2}$, in the molten bisulphate melt at different temperatures (418-498K), have been studied using transmission electron microscopy of ultramicrotomed film sections, and ion beam thinned films. The first sign of incipient breakdown revealed by transmission electron microscopy of stripped films, is always the appearance of dark regions about 1,000 nm in diameter, representing local overgrowth of the film. The breakdown mechanism is closely related to thermal effects, because temperature rises at regions representing local overgrowth in the stripped films were observed at voltages close to the breakdown voltage, likely arising through impact ionization.

  • PDF

Surface modified ceramic fiber separators for thermal batteries

  • Cheong, Hae-Won;Ha, Sang-Hyeon;Choi, Yu-Song
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.308-311
    • /
    • 2012
  • A wide range of possible hazards existing in thermal batteries are mainly caused by thermal runaway, which results in overheating or explosion in extreme case. Battery separators ensure the separation between two electrodes and the retention of ion-conductive electrolytes. Thermal runaways in thermal batteries can be significantly reduced by the adoption of these separators. The high operating temperature and the violent reactivity in thermal batteries, however, have limited the introduction of conventional separators. As a substitute for separators, MgO powders have been mostly used as a binder to hold molten salt electrolyte. During recent decades the fabrication technology of ceramic fiber, which has excellent mechanical strength and chemical stability, has undergone significant improvement. In this study we adopted wet-laid nonwoven paper making method instead of the electrospinning method which is costly and troublesome to produce in volume. Polymeric precursor can readily be coated on the surface of wet-laid ceramic paper, and be formed into ceramic film after heat treatment. The mechanical strength and the thermo-chemical stability as well as the wetting behaviors of ceramic separators with various molten salts were investigated to be applicable to thermal batteries. Due to their excellent chemical, mechanical, and electrical properties, wet-laid nonwoven separators made from ceramic fibers have revealed positive possibility as new separators for thermal batteries which operate at high temperature with no conspicuous sign of a short circuit and corrosion.

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process (물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가)

  • Yun, Kang-Seop;Ku, Hye-Kyung;Kang, Woo-Seung;Kim, Sun-Jae
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries (열전지의 신뢰성에 미치는 파이로테크닉 부품의 특성분석)

  • Cheong, Hae-Won;Kang, Sung-Ho;Kim, Kiyoul;Cho, Jang-Hyeon;Ryu, Byungtae;Baek, Seung-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • Thermal batteries are also called molten-salt batteries as the electrolyte is mainly composed of molten salt. The molten-salt electrolyte is a solid that does not conduct electricity at room temperature, but when it is melted by a pyrotechnic heat source, it becomes an excellent ionic conductor. Thermal batteries are a kind of pyrotechnic battery because they operate only when the solid electrolyte is melted by the heat energy provided by pyrotechnic materials. Pyrotechnic components used in a thermal battery include heat sources, fuse strips, and an igniter. The reliability of these pyrotechnic components critically affects the reliability and performance of the battery that must supply electricity stably to guided munitions even under extreme environmental conditions. Different igniter types offer different advantages: notch-type igniters offer improved ignition probability, whereas film-type igniters offer improved safety. The addition of metal oxides to the heat paper could improve the burn rate, and the ignition reliability could be greatly improved by using it with a flame igniter at the same time. Using a two-step reduction process, high-purity Fe particles in coral form can be safely obtained.

Molten-Salt-Assisted Chemical Vapor Deposition for Growth of Atomically Thin High-Quality MoS2 Monolayer (용융염 기반의 화학기상증착법을 이용한 원자층 두께의 고품질 MoS2 합성)

  • Ko, Jae Kwon;Yuk, Yeon Ji;Lim, Si Heon;Ju, Hyeon-Gyu;Kim, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.57-62
    • /
    • 2021
  • Recently, the atomically thin two-dimensional transition-metal dichalcogenides (TMDs) have received considerable attention for the application to next-generation semiconducting devices, owing to their remarkable properties including high carrier mobility. However, while a technique for growing graphene is well matured enough to achieve a wafer-scale single crystalline monolayer film, the large-area growth of high quality TMD monolayer is still a challenging issue for industrial application. In order to enlarge the size of single crystalline MoS2 monolayer, here, we systematically investigated the effect of process parameters in molten-salt-assisted chemical vapor deposition method. As a result, with optimized process parameters, we found that single crystalline monolayer MoS2 can be grown as large as 420 ㎛.