Browse > Article
http://dx.doi.org/10.14773/cst.2012.11.2.065

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process  

Yun, Kang-Seop (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
Ku, Hye-Kyung (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
Kang, Woo-Seung (Dept. of Metallurgical & Materials Engin., Inha Technical College)
Kim, Sun-Jae (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
Publication Information
Corrosion Science and Technology / v.11, no.2, 2012 , pp. 65-69 More about this Journal
Abstract
One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.
Keywords
molten salt process; $Na_2Ti_6O_{13}$; optical Band-Gap energy; (Photo)electrochemical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ogura, M. Kohno, K. Sato, and Y. Inoue, Chem. Phys., 1, 179 (1999).
2 X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev., 110, 6503 (2010).   DOI   ScienceOn
3 S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Adv. Mater., 20, 54 (2008).   DOI   ScienceOn
4 L. Zhen, C. Y. Xu, W. S. Wang, C. S. Lao, and Q. Kuang, Appl. Surf. Sci., 255, 4149 (2002).
5 H. J. Oh, K. J. Noh, H. K. Ku, K. S. Park, S. C. Jung, W. J. Lee, and S. J. Kim, J. Nanosci. Nanotechno., 11, 7210 (2011).   DOI   ScienceOn
6 H. S. Zhou, J. Sol-Gel. Sci. Techn., 19, 539 (2000).   DOI   ScienceOn
7 E. Morgado Jr, B. Marinkovic, P. Jardim, M. Abreu, and F. Rizzo, J. Solid State Chem., 182, 172 (2009).   DOI   ScienceOn
8 H. K. Ku, H. J. Oh, K. J. Noh, S. C. Jung, K. S. Park, W. J. Lee, and S. J. Kim, J. Nanosci. Nanotechno., 11, 7269 (2011).   DOI   ScienceOn
9 C. Baratto, P. P. Lotticl, D. Bersani, and G. Antonioll, J. Sol-Gel Sci. Techn., 13, 667 (1998).   DOI   ScienceOn