Browse > Article
http://dx.doi.org/10.17702/jai.2020.22.2.57

Molten-Salt-Assisted Chemical Vapor Deposition for Growth of Atomically Thin High-Quality MoS2 Monolayer  

Ko, Jae Kwon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Yuk, Yeon Ji (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Lim, Si Heon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Ju, Hyeon-Gyu (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Kim, Hyun Ho (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Adhesion and Interface / v.22, no.2, 2021 , pp. 57-62 More about this Journal
Abstract
Recently, the atomically thin two-dimensional transition-metal dichalcogenides (TMDs) have received considerable attention for the application to next-generation semiconducting devices, owing to their remarkable properties including high carrier mobility. However, while a technique for growing graphene is well matured enough to achieve a wafer-scale single crystalline monolayer film, the large-area growth of high quality TMD monolayer is still a challenging issue for industrial application. In order to enlarge the size of single crystalline MoS2 monolayer, here, we systematically investigated the effect of process parameters in molten-salt-assisted chemical vapor deposition method. As a result, with optimized process parameters, we found that single crystalline monolayer MoS2 can be grown as large as 420 ㎛.
Keywords
Transition-metal dichalcogenide; Chemical vapor deposition; Molten salt; $MoS_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett., 105, 136805 (2010).   DOI
2 D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett., 108, 196802 (2012).   DOI
3 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol., 6, 147 (2011).   DOI
4 Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng, H.-L. Luo, Y.-Q. Cai, G.-D. Liu, W.-J. Zhao, Z. Zhou, L.-M. Wu, Z.-L. Zhu, M. Huang, L.-W. Liu, L. Liu, P. Cheng, K.-H. Wu, S.-B. Tian, C.-Z. Gu, Y.-G. Shi, Y.-F. Guo, Z. G. Cheng, J.-P. Hu, L. Zhao, G.-H. Yang, E. Sutter, P. Sutter, Y.-L. Wang, W. Ji, X.-J. Zhou, and H.-J. Gao, Nat. Commun., 11, 2453 (2020).   DOI
5 J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.-H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B. I. Yakobson, Q. Liu, K. Suenaga, G. Liu, and Z. Liu, Nature, 556, 355 (2018).   DOI
6 H. Ye, J. Zhou, D. Er, C. C. Price, Z. Yu, Y. Liu, J. Lowengrub, J. Lou, Z. Liu, and V. B. Shenoy, ACS Nano, 11, 12780 (2017).   DOI
7 J. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J.-H. Park, B. G. Shin, H. Ko, S. H. Lee, Y.-M. Kim, Y. H. Lee, K. K. Kim, and S. M. Kim, Science, 362, 817 (2018).   DOI
8 S. Hussain, J. Singh, D. Vikraman, A. K. Singh, M. Z. Iqbal, M. F. Khan, P. Kumar, D.-C. Choi, W. Song, K.-S. An, J. Eom, W.-G. Lee, and J. Jung, Sci. Rep., 6, 30791 (2016).   DOI
9 Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small, 8, 966 (2012).   DOI
10 J.-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang, and D. Whang, Science, 344, 286 (2014).   DOI
11 M. Mobin, A. U. Malik, and S. Ahmad, J. Less Common Met., 160, 1 (1990).   DOI
12 H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater., 22, 1385 (2012).   DOI
13 H. H. Kim, Y. Chung, E. Lee, S. K. Lee, and K. Cho, Adv. Mater., 26, 3213 (2014).   DOI
14 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI
15 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol., 3, 491 (2008).   DOI
16 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, 320, 1308 (2008).   DOI
17 Y. Chung, H. Ho Kim, S. Lee, E. Lee, S. Won Kim, S. Ryu, and K. Cho, Sci. Rep., 5, 12575 (2015).   DOI
18 S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater., 2, 17033 (2017).   DOI
19 X. Qian, J. Liu, L. Fu, and J. Li, Science, 346, 1344 (2014).   DOI
20 Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, J. Am. Chem. Soc., 133, 7296 (2011).   DOI