Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.3.155

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere  

Cho Soo-Hang (Korea Atomic Energy Research Institute)
Lim Jong-Ho (Korea Atomic Energy Research Institute)
Chung Jun-Ho (Korea Atomic Energy Research Institute)
Seo Chung-Seok (Korea Atomic Energy Research Institute)
Park Seoung-Won (Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.15, no.3, 2005 , pp. 155-160 More about this Journal
Abstract
The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.
Keywords
molten salt corrosion; hot corrosion; lithium molten salt; Al-Y coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Park. D. H. Oh, K. M. Cho and I. M. Park, J. Kor. Inst. Met. & Mater., 37, 570 (1999)
2 K. Bouhanek, D. Oquab and B. Pieraggi, Mat. Sci. Forum, 251-254, 34 (1997)
3 U. Brill and G. K. Grossmann, Corrosion Behavior of Weld Overlays of the New Alloy 50, in: Corrosion 2001, Houston, TX, USA, 11-16 March 2001, Nace, paper 170
4 J. Stringer, Surf. Coat. Tech., 108-109, 1 (1998)   DOI   ScienceOn
5 S. Kameswari, Oxid. met., 26, 33 (1973)   DOI
6 A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
7 H. R. Copson, J. Electrochem. Soc., 100, 257 (1953)   DOI
8 M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros. Sci., 39, 1193 (1997)   DOI   ScienceOn
9 S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990)   DOI
10 M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)
11 F. Colom and A. Bodalo, Corros. Sci., 12, 73 (1972)   DOI   ScienceOn
12 W. H. Smyrl and M. J. Blanckburn, Corrosion, 31, 370 (1972)
13 C. B. Gill, M. E. Staumanis and W. E. Schlechten, J. Electrochem. Soc., 102, 42 (1955)   DOI
14 S. W. Kim and Y. H. Son, J. Kor. Soc. Heat Treat., 5, 241 (1992)
15 M. G. Hocking, V. Vasantasree and P. S. Sidky, 'Metallic and Ceramic Coating', Longman Scientific and Technical, Essax, UK (1989)
16 W. T. Griffiths and L. B. Pfeil, U. K. Patent no 459848, (1937)
17 J. A. Geobel, F. S. Pettit and G. W. Goward, Met. Trans., 4, 261 (1973)   DOI
18 E. P. Latham, D. B. Meadowcroft and L. Pinder, Mater. Sci. Tech., 5, 813 (1989)   DOI   ScienceOn
19 F. J. Kohl, G. J. Santoro, C. A. Steams, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979)   DOI