DOI QR코드

DOI QR Code

Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries

열전지의 신뢰성에 미치는 파이로테크닉 부품의 특성분석

  • Received : 2018.06.22
  • Accepted : 2019.01.06
  • Published : 2019.02.01

Abstract

Thermal batteries are also called molten-salt batteries as the electrolyte is mainly composed of molten salt. The molten-salt electrolyte is a solid that does not conduct electricity at room temperature, but when it is melted by a pyrotechnic heat source, it becomes an excellent ionic conductor. Thermal batteries are a kind of pyrotechnic battery because they operate only when the solid electrolyte is melted by the heat energy provided by pyrotechnic materials. Pyrotechnic components used in a thermal battery include heat sources, fuse strips, and an igniter. The reliability of these pyrotechnic components critically affects the reliability and performance of the battery that must supply electricity stably to guided munitions even under extreme environmental conditions. Different igniter types offer different advantages: notch-type igniters offer improved ignition probability, whereas film-type igniters offer improved safety. The addition of metal oxides to the heat paper could improve the burn rate, and the ignition reliability could be greatly improved by using it with a flame igniter at the same time. Using a two-step reduction process, high-purity Fe particles in coral form can be safely obtained.

열전지의 전해질은 용융염이 주성분이라서 용융염 전지라고도 불린다. 용융염 전해질은 평소에는 전기가 흐르지 않는 고체이지만, 화약 열원에 의해 녹으면 탁월한 이온 전도체가 된다. 따라서 열전지는 일종의 화약 전지이다. 화약의 열에너지로 용융염 전해질을 녹여야만 비로소 작동하게 되기 때문이다. 열전지에 사용되는 파이로테크닉 부품은 착화기, 점화스트립, 열원이 있다. 이들 파이로테크닉 부품은 극심한 환경조건에서도 안정적으로 전원을 공급해야 하는 유도 포탄용 열전지의 신뢰도는 물론 성능에도 큰 영향을 미친다. 노치형 착화기는 열원 착화 확률이 높았고, 필름형 착화기는 안전성을 향상시키는 것으로 나타났다. 열지에 금속 산화물 첨가를 통해 연소속도를 향상시킬 수 있었고, 분사형 착화기와 병행 사용하여 착화 신뢰성을 크게 높일 수 있었다. 2단계 환원 공정을 통해 산호 모양의 고순도 Fe 입자를 안전하게 얻을 수 있었다.

Keywords

References

  1. Guidotti, R.A. and Masset, P., "Thermal Activated (Thermal) Battery Technology. Part I: An Overview," Journal of Power Sources, Vol. 161, pp. 1443-1449, 2006. https://doi.org/10.1016/j.jpowsour.2006.06.013
  2. Cheong, H.W., "Status and Strategy of Thermal Battery Development," J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 22, No. 7, pp. 24-33, 2009.
  3. Cheong, H.W., Kang, S.H., Kim, J.M. and Cho, S.B., "Enhanced salt coating on $FeS_2$ surface with the addition of $Li_2O$," Journal of Ceramic Processing Research, Vol. 13, Special. 2, pp. s198-s201, 2012.
  4. Choi, Y.S., Yu, H.R. and Cheong, H.W., "Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries," Journal of Power Sources, Vol. 276, pp. 102-104, 2015. https://doi.org/10.1016/j.jpowsour.2014.11.103
  5. Kang, S.H., Chae, S.H., Cheong, H.W., Kim, K.H., Han, Y.S., Lee, S.M., Yoon, D.H. and Yi, J., "Thermal batteries with ceramic felt separators - Part 2: Ionic conductivity, electrochemical and mechanical properties," Ceramics International, Vol. 43, pp. 4023-4028, 2017. https://doi.org/10.1016/j.ceramint.2016.12.057
  6. Im, C., Park, B.J., Kang, S.H. and Cheong, H.W., "A method of manufacturing a hot paper using shear force and a method of manufacturing," KIPO 10-1750200, 16 Jun. 2017.
  7. Im, C., Lee, J., Kang, S.H. and Cheong, H.W., "Method of manufacturing salt-coated heat paper and salt coated heat paper manufactured thereby," US9,469,573 B2, 18 Oct. 2016.
  8. Guidotti, R.A., "Development History of Fe/$KCIO_4$ Heat Powders at Sandia and Related Aging Issues for Thermal Batteries," Sandia National Laboratories Report SAND2001-2191, 2001.
  9. Rahman, J.U., Lee, H.J., Du, N.V., Tak, J.Y., Kim, D.S., Kim, M.H., Yoon, H.K., Kim, J.H., Jang, Y.H., Cheong, H.W., and Lee, S., "Coral-like iron particles synthesized by morphology controllable reduction process," Ceramics International, Vol. 44, Issue 5, pp. 5359-5364, 2018. https://doi.org/10.1016/j.ceramint.2017.12.156
  10. Cha, S.W., Woo, J., Kim, Y., Oh, S.H., Cho, J.Y., Kim, J.H., Jang, S., Yang, H.W. and Roh, T.S., "Combustion Modeling of Explosive for Pyrotechnic Initiator," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 6, pp. 39-48, 2017. https://doi.org/10.6108/KSPE.2017.21.6.039