DOI QR코드

DOI QR Code

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process

물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가

  • Yun, Kang-Seop (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Ku, Hye-Kyung (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kang, Woo-Seung (Dept. of Metallurgical & Materials Engin., Inha Technical College) ;
  • Kim, Sun-Jae (Institute/Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • 윤강섭 (세종대학교 나노신소재공학부) ;
  • 구혜경 (세종대학교 나노신소재공학부) ;
  • 강우승 (인하공업전문대학 금속재료학과) ;
  • 김선재 (세종대학교 나노신소재공학부)
  • Received : 2012.04.20
  • Accepted : 2012.04.26
  • Published : 2012.04.30

Abstract

One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Keywords

References

  1. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev., 110, 6503 (2010). https://doi.org/10.1021/cr1001645
  2. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, Adv. Mater., 20, 54 (2008). https://doi.org/10.1002/adma.200701819
  3. S. Ogura, M. Kohno, K. Sato, and Y. Inoue, Chem. Phys., 1, 179 (1999).
  4. L. Zhen, C. Y. Xu, W. S. Wang, C. S. Lao, and Q. Kuang, Appl. Surf. Sci., 255, 4149 (2002).
  5. H. J. Oh, K. J. Noh, H. K. Ku, K. S. Park, S. C. Jung, W. J. Lee, and S. J. Kim, J. Nanosci. Nanotechno., 11, 7210 (2011). https://doi.org/10.1166/jnn.2011.4819
  6. H. S. Zhou, J. Sol-Gel. Sci. Techn., 19, 539 (2000). https://doi.org/10.1023/A:1008788606180
  7. E. Morgado Jr, B. Marinkovic, P. Jardim, M. Abreu, and F. Rizzo, J. Solid State Chem., 182, 172 (2009). https://doi.org/10.1016/j.jssc.2008.10.008
  8. H. K. Ku, H. J. Oh, K. J. Noh, S. C. Jung, K. S. Park, W. J. Lee, and S. J. Kim, J. Nanosci. Nanotechno., 11, 7269 (2011). https://doi.org/10.1166/jnn.2011.4820
  9. C. Baratto, P. P. Lotticl, D. Bersani, and G. Antonioll, J. Sol-Gel Sci. Techn., 13, 667 (1998). https://doi.org/10.1023/A:1008694519106