• 제목/요약/키워드: molecular processes

검색결과 1,228건 처리시간 0.021초

A Simple, Rapid, and Automatic Centrifugal Microfluidic System for Influenza A H1N1 Viral RNA Purification

  • Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.277.1-277.1
    • /
    • 2013
  • Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.

  • PDF

Molecular characterization of Japanese indigenous grape cultivar 'Koshu' (Vitis vinifera) leaf and berry skin during grape development

  • Kobayashi, Hironori;Fujita, Keiko;Suzuki, Shunji;Takayanagi, Tsutomu
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.225-241
    • /
    • 2009
  • We investigated the transcriptional profiles of Japanese indigenous grape cultivar 'Koshu' (Vitis vinifera) leaf and berry skin during ripening. In leaf, 64 genes were abundantly transcribed at the end of $v{\acute{e}}raison$ (14 weeks post-flowering), whereas the expression of 61 genes was upregulated at the end of ripening (20 weeks post-flowering). In berry skin, 67 genes were abundantly transcribed at the end of $v{\acute{e}}raison$, whereas the expression of 86 genes was upregulated at the end of ripening. Gene expression associated with biological processes was activated in both tissues at the end of ripening. The expression of genes associated with photosynthesis, sugar synthesis, anthocyanin synthesis, cinnamic acid synthesis, and amino acid metabolism was observed in leaf and berry skin during ripening, together with the accumulation of sugars, anthocyanins, cinnamic acids, and amino acids. Transcripts of AUX/IAA family proteins that repress the activities of auxin-induced proteins were expressed in berry skin at the end of $v{\acute{e}}raison$. Transcripts of genes related to the ubiquitin-proteasome system that degrades AUX/IAA family proteins were abundantly expressed in berry skin at the end of ripening, suggesting that the expansion of skin cells at $v{\acute{e}}raison$ is suppressed by AUX/IAA family proteins, and that the ubiquitin-proteasome system induces the expansion of skin cells during ripening by degrading AUX/IAA family proteins. These transcriptional profiles, which provide new information on the characteristics of 'Koshu' grapevine during ripening, may explain the unique characteristics of 'Koshu' grape in comparison with those of European grapes used for winemaking, and may contribute to the improvement of 'Koshu' grape quality.

Cloning and Expression Characteristics of Pharbitis nil COP1 (PnCOP1) During the Floral Induction

  • 김윤희;김성룡;허윤강
    • Journal of Photoscience
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2005
  • The ubiquitin E3 ligase COP1 (Constitutive Photomorphogenesis 1) is a protein repressor of photomorphogenesis in Arabidopsisplants, and it found in various organisms, including animals. The COP1 protein regulates the stability of many of the light-signaling components that are involved in photomorphogenesis and in the developmental processes. To study the effect of COP1 on flowering in a short day plant, we have cloned a full-length of PnCOP1 (Pharbitis nil COP1) cDNA from Pharbitis nil Choisy cv. Violet, and we examined its transcript levels under various conditions. A full-length PnCOP1 cDNA consists of 2,280 bp nucleotidesthat contain 47 bp of 5'-UTR, 232 bp of 3'-UTR including the poly (A) tail, and 1,998 bp of the coding sequence. The deduced amino acid sequence contains 666 amino acids, giving it a theoretical molecular weight of 75 kD and a isolectric point of 6.2. The PnCOP1 contains three distinct domains, an N-terminal $Zn^2+$-binding RING-finger domain, a coiled-coil structure, and WD40 repeats at the C-terminal, implying that the protein plays a role in protein-protein interactions. The PnCOP1 transcript was detected in the cotyledon, hypocotyls and leaves, but not in root. The levels of the PnCOP1 transcript were reduced in leaves that were a farther distance away from the cotyledons. The expression level of the PnCOP1 gene was inhibited by light, while the expression was increased in the dark. During the floral inductive 16 hour-dark period for Pharbitis nil, the expression was increased and it reached its maximum at the 12th hour of the dark period. The levels of PnCOP1 mRNA were dramatically reduced upon light illumination. These results suggest that PnCOP1 may play an important function in the floral induction of Pharbitis nil.

  • PDF

Dynamics of Microalgae Along the Coastal Areas of Sooyoung Bay, Busan, South Korea

  • Prasad, Binod;Thiyam, General;Lee, Dong-Gyu;Kim, Moo-Sang;Cho, Man-Gi
    • 한국해양바이오학회지
    • /
    • 제5권4호
    • /
    • pp.40-45
    • /
    • 2011
  • Microalgae are one of the major, sustaining components of ecosystem processes and are responsible for biogeochemical reactions that drive our climate changes. Despite this, many marine microalgae are poorly described and little is known of their abundance and distribution along the coastal areas of Sooyoung Bay, Busan, South Korea. The present study has been conducted from November, 2011 to August, 2009 with the objective to provide an overview of the taxonomy diversity and abundance of microalgae along the coastal areas of the Sooyoung Bay. Water samples were collected from different sites, which were located by using a GPS tracker. Chlorophyll fluorescence of the water samples were measured by using ToxY-PAM dual-channel yield analyzer. The chlorophyll fluorescence values were relatively higher during the spring and summer and even in the region near to the sea port. Similarly the abundance of microalgae was higher near the port but diversity index had lower values. The temperature and pH values were same at all the sites. However, only the temperature varied during the sampling period, with higher values during summer and lower in winter. From the preliminary results, the following class of microalgae were found; Bacillariophyceae, Dinophyceae, Silicoflagellate and Cryptophyceae. With a future ongoing work, microalgae are being isolated to establish single cell culture and for identification using light microscopic observations, photography and molecular approaches.

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.363-369
    • /
    • 2007
  • Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.

Methanol Extracts of Stewartia koreana Inhibit Cyclooxygenase-2 (COX-2) and Inducible Nitric Oxide Synthase (iNOS) Gene Expression by Blocking NF-κB Transactivation in LPS-activated RAW 264.7 Cells

  • Lee, Tae Hoon;Kwak, Han Bok;Kim, Hong-Hee;Lee, Zang Hee;Chung, Dae Kyun;Baek, Nam-In;Kim, Jiyoung
    • Molecules and Cells
    • /
    • 제23권3호
    • /
    • pp.398-404
    • /
    • 2007
  • Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are involved in various pathophysiological processes such as inflammation and carcinogenesis. In a search for inhibitors of COX-2 and iNOS production we found that extracts of Stewartia koreana strongly inhibited NO and $PGE_2$ production in LPS-treated macrophage RAW 264.7 cells. We have now shown that the mRNA and protein levels of iNOS and COX-2 are reduced by the Stewartia koreana extract (SKE). SKE inhibited expression of an NF-${\kappa}B$ reporter gene in response to LPS, and gel mobility shift assays revealed that SKE reduced NF-${\kappa}B$ DNA-binding activity. The extract also inhibited LPS-induced phosphorylation of $I{\kappa}B-{\alpha}$ and nuclear translocation of p65. Administration of the extract reduced the symptoms of arthritis in a collagen-induced arthritic mouse model. These results indicate that Stewartia extracts contain potentially useful agents for preventing and treating inflammatory diseases.

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

  • Lee, Eun-Ju;Park, Kwan-Sik;Jeon, In-Sook;Cho, Jae-Woon;Lee, Sang-Jeon;Choy, Hyun E.;Song, Ki-Duk;Lee, Hak-Kyo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.566-572
    • /
    • 2016
  • Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

  • Cho, Hong-Rae;Kong, Yoon-Ju;Hong, Soo-Gil;Kim, Keun Pil
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.550-556
    • /
    • 2016
  • During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the $hop2{\Delta}$ or $sae3{\Delta}$ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

MicroRNA-26a Regulates RANKL-Induced Osteoclast Formation

  • Kim, Kabsun;Kim, Jung Ha;Kim, Inyoung;Lee, Jongwon;Seong, Semun;Park, Yong-Wook;Kim, Nacksung
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.75-80
    • /
    • 2015
  • Osteoclasts are unique cells responsible for the resorption of bone matrix. MicroRNAs (miRNAs) are involved in the regulation of a wide range of physiological processes. Here, we examined the role of miR-26a in RANKL-induced osteoclastogenesis. The expression of miR-26a was upregulated by RANKL at the late stage of osteoclastogenesis. Ectopic expression of an miR-26a mimic in osteoclast precursor cells attenuated osteoclast formation, actin-ring formation, and bone resorption by suppressing the expression of connective tissue growth factor/CCN family 2 (CTGF/CCN2), which can promote osteoclast formation via upregulation of dendritic cell-specific transmembrane protein (DC-STAMP). On the other hand, overexpression of miR-26a inhibitor enhanced RANKL-induced osteoclast formation and function as well as CTGF expression. In addition, the inhibitory effect of miR-26a on osteoclast formation and function was prevented by treatment with recombinant CTGF. Collectively, our results suggest that miR-26a modulates osteoclast formation and function through the regulation of CTGF.

Identification and Characterization of a Putative Basic Helix-Loop-Helix (bHLH) Transcription Factor Interacting with Calcineurin in C. elegans

  • Lee, Soo-Ung;Song, Hyun-Ok;Lee, Wonhae;Singaravelu, Gunasekaran;Yu, Jae-Ran;Park, Woo-Yoon
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.455-461
    • /
    • 2009
  • Calcineurin is a $Ca^{2+}$/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotoninmediated egg laying at the downstream of tax-6.