Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0112

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium  

Lee, Eun-Ju (Department of Biochemistry, College of Medicine, Chungbuk National University)
Park, Kwan-Sik (Department of Biochemistry, College of Medicine, Chungbuk National University)
Jeon, In-Sook (Department of Biochemistry, College of Medicine, Chungbuk National University)
Cho, Jae-Woon (Department of Surgery, College of Medicine, Chungbuk National University)
Lee, Sang-Jeon (Department of Surgery, College of Medicine, Chungbuk National University)
Choy, Hyun E. (Department of Microbiology, Chonnam National University Medical School)
Song, Ki-Duk (Department of Animal Biotechnology, Chonbuk National University)
Lee, Hak-Kyo (Department of Animal Biotechnology, Chonbuk National University)
Choi, Joong-Kook (Department of Biochemistry, College of Medicine, Chungbuk National University)
Abstract
Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.
Keywords
LAMP-3; LPS; lysosome; Salmonella typhimurium;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Agarwal, A.K., Srinivasan, N., Godbole, R., More, S.K., Budnar, S., Gude, R.P., and Kalraiya, R.D. (2015). Role of tumor cell surface lysosome-associated membrane protein-1(LAMP1) and its associated carbohydrates in lung metastasis. J. Cancer Res. Clin. Oncol. 141, 1563-1574.   DOI
2 Andrejewski, N., Punnonen, E.L., Guhde, G., Tanaka, Y., Lullmann-Rauch, R., Hartmann, D., von Figura, K., and Saftig, P. (1999). Normal lysosomal morphology and function in LAMP-1-deficient mice. J. Biol. Chem. 274, 12692-12701.   DOI
3 Angus, A.A., Lee, A.A., Augustin, D.K., Lee, E.J., Evans, D.J., and Fleiszig, S.M. (2008). Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect. Immun. 76, 1992-2001.   DOI
4 Appelqvist, H., Waster, P., Kagedal, K., and Ollinger, K. (2013). The lysosome: from waste bag to potential therapeutic target. J. Mol. Cell Biol. 5, 214-226.   DOI
5 Arpaia, N., Godec, J., Lau, L., Sivick, K.E., McLaughlin, L.M., Jones, M.B., Dracheva, T., Peterson, S.N., Monack, D.M., and Barton, G.M. (2011). TLR signaling is required for Salmonella typhimurium virulence. Cell 144, 675-688.   DOI
6 Bakowski, M.A., Braun, V., and Brumell, J.H. (2008). Salmonellacontaining vacuoles: directing traffic and nesting to grow. Traffic 9, 2022-2031.   DOI
7 Baldeon, M.E., Ceresa, B.P., and Casanova, J.E. (2001). Expression of constitutively active Rab5 uncouples maturation of the Salmonella-containing vacuole from intracellular replication. Cell. Microbiol. 3, 473-486.   DOI
8 Barois, N., de Saint-Vis, B., Lebecque, S., Geuze, H.J., and Kleijmeer, M.J. (2002). MHC class II compartments in human dendritic cells undergo profound structural changes upon activation. Traffic 3, 894-905.   DOI
9 Bechetoille, N., Andre, V., Valladeau, J., Perrier, E., and Dezutter-Dambuyant, C. (2006). Mixed Langerhans cell and interstitial/dermal dendritic cell subsets emanating from monocytes in Th2-mediated inflammatory conditions respond differently to proinflammatory stimuli. J. Leukocyte Biol. 80, 45-58.   DOI
10 Beuzon, C.R., Salcedo, S.P., and Holden, D.W. (2002). Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148, 2705-2715.   DOI
11 Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T., and Brumell, J.H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281, 11374-11383.   DOI
12 Castillo, E.F., Dekonenko, A., Arko-Mensah, J., Mandell, M.A., Dupont, N., Jiang, S., Delgado-Vargas, M., Timmins, G.S., Bhattacharya, D., Yang, H., et al. (2012). Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. USA 109, E3168-3176.   DOI
13 Chakravortty, D., Hansen-Wester, I., and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195, 1155-1166.   DOI
14 Coburn, B., Grassl, G.A., and Finlay, B.B. (2007). Salmonella, the host and disease: a brief review. Immunol. Cell Biol. 85, 112-118.   DOI
15 Cox, T.M., and Cachon-Gonzalez, M.B. (2012). The cellular pathology of lysosomal diseases. J. Pathol. 226, 241-254.   DOI
16 Eskelinen, E.L., and Saftig, P. (2009). Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta 1793, 664-673.   DOI
17 De Saint-Vis, B., Vincent, J., Vandenabeele, S., Vanbervliet, B., Pin, J.J., Ait-Yahia, S., Patel, S., Mattei, M.G., Banchereau, J., Zurawski, S., et al. (1998). A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9, 325-336.   DOI
18 Dominguez-Bautista, J.A., Klinkenberg, M., Brehm, N., Subramaniam, M., Kern, B., Roeper, J., Auburger, G., and Jendrach, M. (2015). Loss of lysosome-associated membrane protein 3 (LAMP3) enhances cellular vulnerability against proteasomal inhibition. Eur. J. Cell Biol. 94, 148-161.   DOI
19 Eskelinen, E.L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 27, 495-502.   DOI
20 Fabrega, A., and Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin. Microbiol. Rev. 26, 308-341.   DOI
21 Furuta, K., Yang, X.L., Chen, J.S., Hamilton, S.R., and August, J.T. (1999). Differential expression of the lysosome-associated membrane proteins in normal human tissues. Arch. Biochem. Biophysics 365, 75-82.   DOI
22 Guha, M., and Mackman, N. (2002). The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J. Biol. Chem. 277, 32124-32132.   DOI
23 Holness, C.L., and Simmons, D.L. (1993). Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81, 1607-1613.
24 Knodler, L.A., and Celli, J. (2011). Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell. Microbiol. 13, 1319-1327.   DOI
25 Jo, E.K., Yuk, J.M., Shin, D.M., and Sasakawa, C. (2013). Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol. 4, 97.
26 Kanao, H., Enomoto, T., Kimura, T., Fujita, M., Nakashima, R., Ueda, Y., Ueno, Y., Miyatake, T., Yoshizaki, T., Buzard, G.S., et al. (2005). Overexpression of LAMP3/TSC403/DC-LAMP promotes metastasis in uterine cervical cancer. Cancer Res. 65, 8640-8645.   DOI
27 Kleijmeer, M., Ramm, G., Schuurhuis, D., Griffith, J., Rescigno, M., Ricciardi-Castagnoli, P., Rudensky, A.Y., Ossendorp, F., Melief, C.J., Stoorvogel, W., et al. (2001). Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53-63.   DOI
28 Levine, B., and Deretic, V. (2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767-777.   DOI
29 Liao, X., Chen, Y., Liu, D., Li, F., Li, X., and Jia, W. (2015). High expression of LAMP3 is a novel biomarker of poor prognosis in patients with esophageal squamous cell carcinoma. Int. J. Mol. Sci. 16, 17655-17667.   DOI
30 Mujcic, H., Rzymski, T., Rouschop, K.M., Koritzinsky, M., Milani, M., Harris, A.L., and Wouters, B.G. (2009). Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother. Oncol. 92, 450-459.   DOI
31 Nagelkerke, A., Mujcic, H., Bussink, J., Wouters, B.G., van Laarhoven, H.W., Sweep, F.C., and Span, P.N. (2011). Hypoxic regulation and prognostic value of LAMP3 expression in breast cancer. Cancer 117, 3670-3681.   DOI
32 Roark, E.A., and Haldar, K. (2008). Effects of lysosomal membrane protein depletion on the Salmonella-containing vacuole. PLoS One 3, e3538.   DOI
33 Nagelkerke, A., Bussink, J., Mujcic, H., Wouters, B.G., Lehmann, S., Sweep, F.C., and Span, P.N. (2013). Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 15, R2.   DOI
34 Nagelkerke, A., Sieuwerts, A.M., Bussink, J., Sweep, F.C., Look, M.P., Foekens, J.A., Martens, J.W., and Span, P.N. (2014). LAMP3 is involved in tamoxifen resistance in breast cancer cells through the modulation of autophagy. Endocr. Relat. Cancer 21, 101-112.   DOI
35 Nishino, I., Fu, J., Tanji, K., Yamada, T., Shimojo, S., Koori, T., Mora, M., Riggs, J.E., Oh, S.J., Koga, Y., et al. (2000). Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906-910.   DOI
36 Ryter, S.W., Cloonan, S.M., and Choi, A.M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16.   DOI
37 Saha, T. (2012). LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 8, 1643-1656.   DOI
38 Schmidt, H., and Hensel, M. (2004). Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 14-56.   DOI
39 Shroff A, Ayyar K, Saha D, Reddy KVR. (2014). Host autophagy response: friend or foe in reproductive tract infections. SOJ Microbiol. Infect Dis. 2, 1-9.
40 Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D.W., Lucia, S.M., Dinauer, M.C., Mastroeni, P., and Fang, F.C. (2000). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655-1658.   DOI
41 Zhou, Z., Xue, Q., Wan, Y., Yang, Y., Wang, J., and Hung, T. (2011). Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549) cells. Virology J. 8, 384.   DOI
42 Wileman, T. (2013). Autophagy as a defence against intracellular pathogens. Essays Biochem. 55, 153-163.   DOI
43 Wilke, S., Krausze, J., and Bussow, K. (2012). Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx. BMC Biol. 10, 62.   DOI