Browse > Article

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria  

Kim, Byung Joo (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine)
Jeon, Ju-Hong (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine)
Kim, Seon Jeong (Center for Bio-Artificial Muscle and Department of Biomedical Engineering, Hanyang University)
So, Insuk (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine)
Kim, Ki Whan (Center for Bio-Artificial Muscle and Department of Physiology, Seoul National University College of Medicine)
Abstract
Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.
Keywords
Antimycin A; CCCP; Mitochondria; Oligomycin; Rotenone; TRPM7;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Rutter, G. A. and Rizzuto, R. (2000) Regulation of mitochondrial metabolism by ER $Ca^{2+}$ release: an intimate connection. Trends. Biochem. Sci. 25, 215–221   DOI
2 Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, et al. (2003) Regulation of vertebrate cellular $Mg^{2+}$ homeostasis by TRPM7. Cell 114, 191-200   DOI   ScienceOn
3 Aarts, M., Iihara, K., Wei, W. L., Xiong, Z. G., Arundine, M., et al. (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877
4 Allen, R. D., Schroeder, C. C., and Fok, A. K. (1989) An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J. Cell. Biol. 108, 2233–2240
5 Aronis, A., Komarnitsky, R., Shilo, S., and Tirosh, O. (2002) Membrane depolarization of isolated rat liver mitochondria attenuates permeability transition pore opening and oxidant production. Antioxid. Redox. Signal. 4, 647–654
6 Berry, E. A., Guergova-Kuras, M., Huang, L. S., and Crofts, A. R. (2000) Structure and function of cytochrome bc complexes. Annu. Rev. Biochem. 69, 1005-1075   DOI   ScienceOn
7 Bragadin, M., Pozzan, T., and Azzone, G. F. (1979) Kinetics of $Ca^{2+}$ carrier in rat liver mitochondria. Biochemistry 18, 5972-5978   DOI   ScienceOn
8 Chubanov, V., Waldegger, S., Mederosy Schnitzler, M., Vitzthum, H., Sassen, M. C., et al. (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA 101, 2894- 2899
9 Duchen, M. R. (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death. J. Physiol. 516, 1-17   DOI   ScienceOn
10 Kang, Y. K. and Park, M. K. (2005) Endoplasmic reticulum $Ca^{2+}$ store: regulation of $Ca^{2+}$ release and reuptake by intracellular and extracellular $Ca^{2+}$ in pancreatic acinar cells. Mol. Cells 19, 268-278
11 Kozak, J. A., Kerschbaum, H. H., and Cahalan, M. D. (2002) Distinct properties of CRAC and MIC channels in RBL cells. J. Gen. Physiol. 120, 221-235   DOI
12 Langeslag, M., Clark, K., Moolenaar, W. H., Van Leeuween, F. N., and Jalink, K. (2007) Activation of TRPM7 channels by PLC-coupled receptor agonists. J. Biol. Chem. 282, 232-239   DOI   ScienceOn
13 Montero, M., Alonso, M. T., Carnicero, E., Cuchillo-Ibanez, I., Albillos, A., et al. (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial $Ca^{2+}$ transients that modulate secretion. Nat. Cell. Biol. 2, 57-61   DOI   ScienceOn
14 Hanano, T., Hara, Y., Shi, J., Morita, H., Umebayashi, C., et al. (2004) Involvement of TRPM7 in cell growth as a spontaneously activated $Ca^{2+}$ entry pathway in human retinoblastoma cells. J. Pharmacol. Sci. 95, 403-419   DOI   ScienceOn
15 Fleig, A. and Penner, R. (2004) Emerging roles of TRPM channels. Novartis Found Symp 258, 248-258
16 Montero, M., Lobaton, C. D., Hernandez-Sanmiguel, E., Santodomingo, J., Vay, L., et al. (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem. J. 384, 19-24   DOI   ScienceOn
17 Raha, S. and Robinson, B. H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508   DOI   ScienceOn
18 David, G., Barrett, J. N., and Barrett, E. F. (1998) Evidence that mitochondria buffer physiological $Ca^{2+}$ loads in lizard motor nerve terminals. J. Physiol. 509, 59-65   DOI   ScienceOn
19 Farkas, D. L., Wei, M. D., Febbroriello, P., Carson, J. H., and Loew, L. W. (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys. J. 56, 1053-1069   DOI   ScienceOn
20 Friedrich, T. and Bottcher, B. (2004) The gross structure of the respiratory Complex I: a Lego system. Biochim. Biophys. Acta. 1608, 1-9   DOI   ScienceOn
21 Nadler, M. J., Hermosura, M. C., Inabe, K., Perraud, A. L., Zhu, Q., et al. (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590-595   DOI   ScienceOn
22 Demeuse, P., Penner, R., and Fleig, A. (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 127, 421-434   DOI   ScienceOn
23 Hermosura, M. C., Monteilh-Zoller, M. K., Scharenberg, A. M., Penner, R., and Fleig, A. (2002) Dissociation of the storeoperated calcium current I (CRAC) and the Mg-nucleotideregulated metal ion current MagNuM. J. Physiol. 539, 445-458   DOI   ScienceOn
24 Prakriya, M. and Lewis, R. S. (2002) Separation and characterization of currents through store-operated CRAC channels and $Mg^{2+}$-inhibited cation (MIC) channels. J. Gen. Physiol. 119, 487-507   DOI   ScienceOn
25 Luo, Y., Bond, J. D., and Ingram, V. M. (1997) Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc. Natl. Acad. Sci. USA 94, 9705-9710
26 Matlib, M. A., Zhou, Z., Knight, S., Ahmed, S., Choi, K. M., et al. (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits $Ca^{2+}$ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J. Biol. Chem. 273, 10223-10231   DOI   ScienceOn
27 Park, K. S., Jo, I., Pak, K., Bae, S. W., Rhim, H., et al. (2002) FCCP depolarizes plasma membrane potential by activating proton and $Na^+$ currents in bovine aortic endothelial cells. Pflugers Arch. 443, 344-352   DOI   ScienceOn
28 Harteneck, C., Plant, T. D., and Schultz, G. (2000) From worm to man: three subfamilies of TRP channels. Trends. Neurosci. 23, 159-166   DOI   ScienceOn
29 Montell, C. (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE RE1.
30 Runnels, L. W., Yue, L., and Clapham, D. E. (2002) The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat. Cell. Biol. 4, 329–336.
31 Gunter, K. K. and Gunter, T. E. (1994) Transport of calcium by mitochondria. J. Bioenerg. Biomem. 26, 471-485   DOI   ScienceOn
32 Cheranov, S. Y. and Jaggar, J. H. (2004) Mitochondrial modulation of $Ca^{2+}$ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J. Physiol. 556, 755-771   DOI   ScienceOn
33 Collins, A. and Larson, M. (2005) Regulation of inward rectifier $K^{+}$ channels by shift of intracellular pH dependence. J. Cell. Physiol. 202, 76-86   DOI   ScienceOn
34 Jeong, S. Y., Shin, S. Y., Kim, H., Bae, C., Uhm, D. Y., et al. (2006) Regulation of magnesium-inhibited cation current by actin cytoskeleton rearrangement. Biochem. Biophys. Res. Commun. 339, 810-815   DOI   ScienceOn
35 Boschek, B. C. (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly. Musca domestica, Z. Zellforsch. 118, 369-409   DOI
36 Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, et al. (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174.
37 Minke, B. and Agam, K. (2003) TRP gating is linked to the metabolic state and maintenance of the Drosophila photoreceptor cells. Cell Calcium 33, 395-408   DOI   ScienceOn
38 Schlingmann, K. P., Weber, S., Peters, M., Niemann Nejsum, L., Vitzthum, H., et al. (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170
39 Oancea, E., Wolfe, J. T., and Clapham, D. E. (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ. Res. 98, 245-253   DOI   ScienceOn
40 Monteilh-Zoller, M. K., Hermosura, M. C., Nadler, M. J., Scharenberg, A. M., Penner, R., et al. (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol. 121, 49-60   DOI   ScienceOn
41 Runnels, L. W., Yue, L., and Clapham, D. E. (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043-1047   DOI   ScienceOn
42 Clapham, D. E. (2003) TRP channels as cellular sensors. Nature 426, 517-524   DOI   ScienceOn
43 Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, et al. (2004) Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc. Natl. Acad. Sci. U S A 101, 6009–6014.
44 Kim, B. J., Lim, H. H., Yang, D. K., Jun, J. Y., Chang, I. Y., et al. (2005) Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504-1517   DOI   ScienceOn
45 Guerrieri, F., Lorusso, M., Pansini, A., Ferrarese, V., and Papa, S. (1976) On the mechanism of action of oligomycin and acidic uncouplers on proton translocation and energy transfer in 'sonic' submitochondrial particles. J. Bioenerg. Biomembr. 8, 131-142   DOI
46 Heytler, P. G. and Prichard, W. W. (1962) A new class of uncoupling agents-carbonyl cyanide phenylhydrazones. Biochem. Biophys. Res. Commun. 7, 272-275   DOI   ScienceOn