Browse > Article
http://dx.doi.org/10.1007/s10059-009-0145-5

Identification and Characterization of a Putative Basic Helix-Loop-Helix (bHLH) Transcription Factor Interacting with Calcineurin in C. elegans  

Lee, Soo-Ung (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine)
Song, Hyun-Ok (Department of Life Science, Gwangju Institute of Science and Technology)
Lee, Wonhae (Department of Life Science, Gwangju Institute of Science and Technology)
Singaravelu, Gunasekaran (Department of Life Science, Gwangju Institute of Science and Technology)
Yu, Jae-Ran (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine)
Park, Woo-Yoon (Department of Radiation Oncology, College of Medicine, Chungbuk National University)
Abstract
Calcineurin is a $Ca^{2+}$/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotoninmediated egg laying at the downstream of tax-6.
Keywords
basic helix-loop-helix; calcineurin; C. elegans; egg laying; HLH-11;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Chen, L., Krause, M., Draper, B., Weintraub, H., and Fire, A. (1992). Body-wall muscle formation in Caenorhabditis elegans embryos that lack the MyoD homolog hlh-1. Science 256, 240-243   DOI   PUBMED
2 Crabtree, G.R. (1999). Generic signals and specific outcomes: signaling through $Ca^{2+}, $, calcineurin, and NF-AT. Cell 96, 611-614   DOI   PUBMED   ScienceOn
3 Karp, X., and Greenwald, I. (2004). Multiple roles for the E/Daughterless ortholog HLH-2 during C. elegans gonadogenesis. Dev. Biol. 272, 460-469   DOI   ScienceOn
4 Klee, C.B., Crouch, T.H., and Krinks, M.H. (1979). Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76, 6270-6273   DOI   ScienceOn
5 Krause, M., Harrison, S.W., Xu, S.Q., Chen, L., and Fire, A. (1994). Elements regulating cell- and stage-specific expression of the C. elegans MyoD family homolog hlh-1. Dev. Biol. 166, 133-148   DOI   ScienceOn
6 Ledent, V., Paquet, O., and Vervoort, M. (2002). Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol. 3, RESEARCH0030
7 Mello, C., and Fire, A. (1995). DNA transformation. Methods Cell Biol. 48, 451-482   DOI   PUBMED
8 Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486-488   DOI   ScienceOn
9 Park, B.J., Lee, J., Lee, J., Kim, S., Choi, K., Park, C.S., and Ahnn, J. (2000). Isolation of deletion mutants by reverse genetics in Caenorhabditis elegans. Korean J. Biol. Sci. 5, 5
10 Portman, D.S., and Emmons, S.W. (2000). The basic helix-loophelix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127, 5415-5426   PUBMED
11 Schulz, R.A., and Yutzey, K.E. (2004). Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev. Biol. 266, 1-16   DOI   ScienceOn
12 Thellmann, M., Hatzold, J., and Conradt, B. (2003). The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057-4071   DOI   ScienceOn
13 Trent, C., Tsuing, N., and Horvitz, H.R. (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104, 619-647   PUBMED
14 Klee, C.B., Ren, H., and Wang, X. (1998). Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367-13370   DOI   ScienceOn
15 Kim, Y.H., Song, H.O., Ko, K.M., Singaravelu, G., Jee, C., Kang, J., and Ahnn, J. (2008). A novel calcineurin-interacting protein, CNP-3, modulates calcineurin deficient phenotypes in Caenorhabditis elegans. Mol. Cells 25, 566-571   PUBMED
16 Krause, M., Park, M., Zhang, J.M., Yuan, J., Harfe, B., Xu, S.Q., Greenwald, I., Cole, M., Paterson, B., and Fire, A. (1997). A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124, 2179-2189   PUBMED
17 Zhao, J., Wang, P., and Corsi, A.K. (2007). The C. elegans Twist target gene, arg-1, is regulated by distinct E box promoter elements. Mech. Dev. 124, 377-389   DOI   ScienceOn
18 Ciarapica, R., Rosati, J., Cesareni, G., and Nasi, S. (2003). Molecular recognition in helix-loop-helix and helix-loop-helix-leucine zipper domains. Design of repertoires and selection of high affinity ligands for natural proteins. J. Biol. Chem. 278, 12182-12190   DOI   ScienceOn
19 Kuhara, A., Inada, H., Katsura, I., and Mori, I. (2002). Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6. Neuron 33, 751-763   DOI   ScienceOn
20 Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94   PUBMED
21 Murre, C., Bain, G., van Dijk, M.A., Engel, I., Furnari, B.A., Massari, M.E., Matthews, J.R., Quong, M.W., Rivera, R.R., and Stuiver, M.H. (1994). Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta 1218, 129-135   DOI   PUBMED   ScienceOn
22 Gort, E.H., van Haaften, G., Verlaan, I., Groot, A.J., Plasterk, R.H., Shvarts, A., Suijkerbuijk, K.P., van Laar, T., van der Wall, E., Raman, V., et al. (2008). The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene 27, 1501-1510   DOI   ScienceOn
23 Karp, X., and Greenwald, I. (2003). Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in C. elegans. Genes Dev. 17, 3100-3111   DOI   ScienceOn
24 Corsi, A.K., Kostas, S.A., Fire, A., and Krause, M. (2000). Caenorhabditis elegans twist plays an essential role in non-striated muscle development. Development 127, 2041-2051   PUBMED
25 Fukushige, T., and Krause, M. (2005). The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development 132, 1795-1805   DOI   ScienceOn
26 Lee, J., Jee, C., Song, H.O., Bandyopadhyay, J., Lee, J.I., Yu, J.R., Park, B.J., and Ahnn, J. (2004). Opposing functions of calcineurin and CaMKII regulate G-protein signaling in egg-laying behavior of C. elegans. J. Mol. Biol. 344, 585-595   DOI   ScienceOn
27 Bandyopadhyay, J., Lee, J., Lee, J.I., Yu, J.R., Jee, C., Cho, J.H., Jung, S., Lee, M.H., Zannoni, S., Singson, A., et al. (2002). Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans. Mol. Biol. Cell 13, 3281-3293   DOI   ScienceOn
28 Hashimoto, Y., Perrino, B.A., and Soderling, T.R. (1990). Identification of an autoinhibitory domain in calcineurin. J. Biol. Chem. 265, 1924-1927   PUBMED
29 Solari, F., Bateman, A., and Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126, 2483-2494   PUBMED
30 Stewart, A.A., Ingebritsen, T.S., Manalan, A., Klee, C.B., and Cohen, P. (1982). Discovery of a $Ca^{2+} $- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett. 137, 80-84   DOI   ScienceOn
31 Harfe, B.D., Vaz Gomes, A., Kenyon, C., Liu, J., Krause, M., and Fire, A. (1998b). Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 12, 2623-2635   DOI   ScienceOn
32 Davies, K.J., Ermak, G., Rothermel, B.A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider, S., Strippoli, P., et al. (2007). Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028   DOI   ScienceOn
33 Im, S.H., and Rao, A. (2004). Activation and deactivation of gene expression by $Ca^{2+}, $/calcineurin-NFAT-mediated signaling. Mol. Cells 18, 1-9   PUBMED
34 Lee, J., Song, H.O., Jee, C., Vanoaica, L., and Ahnn, J. (2005). Calcineurin regulates enteric muscle contraction through EXP-1, excitatory GABA-gated channel, in C. elegans. J. Mol. Biol. 352, 313-318   DOI   ScienceOn
35 Hallam, S., Singer, E., Waring, D., and Jin, Y. (2000). The C. elegans NeuroD homolog cnd-1 f u nctions in m u ltiple a spects o f motor neuron fate specification. Development 127, 4239-4252   PUBMED
36 Chen, L., Krause, M., Sepanski, M., and Fire, A. (1994). The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development 120, 1631-1641   PUBMED
37 Harfe, B.D., Branda, C.S., Krause, M., Stern, M.J., and Fire, A. (1998a). MyoD and the specification of muscle and non-muscle fates during postembryonic development of the C. elegans mesoderm. Development 125, 2479-2488   PUBMED
38 Jan, Y.N., and Jan, L.Y. (1993). HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827-830   DOI   ScienceOn
39 Singaravelu, G., Song, H.O., Ji, Y.J., Jee, C., Park, B.J., and Ahnn, J. (2007). Calcineurin interacts with KIN-29, a Ser/Thr kinase, in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 352, 29-35   DOI   ScienceOn
40 Ledent, V., and Vervoort, M. (2001). The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res. 11, 754-770   DOI   ScienceOn
41 Wang, D., Claus, C.L., Vaccarelli, G., Braunstein, M., Schmitt, T.M., Zuniga-Pflucker, J.C., Rothenberg, E.V., and Anderson, M.K. (2006). The basic helix-loop-helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of T cell precursors. J. Immunol. 177, 109-119   DOI
42 Zhang, J.M., Chen, L., Krause, M., Fire, A., and Paterson, B.M. (1999). Evolutionary conservation of MyoD function and differential utilization of E proteins. Dev. Biol. 208, 465-472   DOI   ScienceOn
43 Massari, M.E., and Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429-440   DOI   ScienceOn
44 Corsi, A.K., Brodigan, T.M., Jorgensen, E.M., and Krause, M. (2002). Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre- Chotzen syndrome. Development 129, 2761-2772   PUBMED
45 Hubbard, M.J., and Klee, C.B. (1989). Functional domain structure of calcineurin A: mapping by limited proteolysis. Biochemistry 28, 1868-1874   DOI   ScienceOn