• 제목/요약/키워드: molecular markers

검색결과 1,235건 처리시간 0.023초

Genetic Basis of Screening of Molecular Markers for Nuclear Polyhedrosis Virus Resistance in Bombyx mori L.

  • Chen, Keping;Yao, Qin;Wang, Yong;Cheng, Jialin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제7권1호
    • /
    • pp.5-10
    • /
    • 2003
  • The nuclear polyhedrosis virus (NPV) resistance of silkworm is controlled by a pair of dominant genes on autosome and micro-effect modificator genes on sex chromosome Z and has the phenomenon of patroclinal inheritance. Based on its hereditary characteristics, methods of preparing near isogenic lines and their $F_2$ populations for screening molecular markers were designed.

식물유전 및 육종학 연구에서의 분자생물학적 마커기술의 이용 (Utilization of Molecular Markers in Plant Genetics and Breeding)

  • 이주경
    • 한국자원식물학회지
    • /
    • 제10권2호
    • /
    • pp.200-210
    • /
    • 1997
  • The understanding on the plant genome is accelerated with the fast advance of molecular biological techniques. The molecular dissecting of the plant genome has made possible the precise genotyping the plants, which can be utilized for molecular breeding program. As well, the molecular cloning of genes interested can facilitate the process of gene transfer between intra-and inter-generic taxa. Moreover, the manipulation of the agronomically important QTL genes, which can be rarely performed by the conventional genetic methods, is also possible by the utilization of molecular markers. In addition to these genetical applications, molecular markers are useful in the areas of plant taxonomy and management of germplasm by fingerprinting analysis. This paper describes the theoretical aspects marker technologies and practical applications of each marker technique.

  • PDF

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제10권2호
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Cancer stem cell surface markers on normal stem cells

  • Kim, Won-Tae;Ryu, Chun Jeih
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.285-298
    • /
    • 2017
  • The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.

작물 육종에서 분자유전자 지도의 이용 (Genome Mapping Technology And Its Application In Plant Breeding)

  • 은무영
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1995년도 제9회 식물생명공학 심포지움 식물육종과 분자생물학의 만남 The 9th Plant Biotechnology Symposium -Breeding and Molecular Biology-
    • /
    • pp.57-86
    • /
    • 1995
  • Molecular mapping of plant genomes has progressed rapidly since Bostein et al.(1980) introduced the idea of constructing linkage maps of human genome based on restriction fragment length polymorphism (RFLP) markers. In recent years, the development of protein and DNA markers has stimulated interest for the new approaches to plant improvement. While classical maps based on morphological mutant markers have provided important insights into the plant genetics and cytology, the molecular maps based on molecular markers have a number of inherent advatages over classical genetic maps for the applications in genetic studies and/or breeding schemes. Isozymes and DNA markers are numerous, discrete, non-deleterious, codominant, and almost entirely free of environmental and epistatic interactions. For these reasons, they are widely used in constructing detailed linkage maps in a number of plant species. Plant breeders improve crops by selecting plants with desirable phenotypes. However a plant's phenotyes is often under genetic control, positioning at different "quantitative trait loci" (QTLs) together with environmental effects. Molecular maps provide a possible way to determine the effect of the individual gene that combines to produce a quantitative trait because the segregation of a large number of markers can be followed in a single genetic cross. Using market-assisted selection, plants that contain several favorable genes for the trait and do not contain unfavourable segments can be obtained during early breeding processes. Providing molecular maps are available, valuable data relevant to the taxonomic relationships and chromosome evolution can be accumulated by comparative mapping and also the structural relationships between linkage map and physical map can be identified by cDNA sequencing. After constructing high density maps, it will be possible to clone genes, whose products are unknown, such as semidwarf and disease resistance genes. However, much attention has to be paid to level-up the basic knowledge of genetics, physiology, biochemistry, plant pathology, entomology, microbiology, and so on. It must also be kept in mind that scientists in various fields will have to make another take off by intensive cooperation together for early integration and utilization of these newly emerging high-techs in practical breeding. breeding.

  • PDF

Characterization of Pyrenophora graminea Markers Associated with a Locus Conferring Virulence on Barley

  • Mokrani, Lubna;Jawhar, Mohammad;Shoaib, Amina;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.290-294
    • /
    • 2012
  • The fungus Pyrenophora graminea is the causal agent of barley leaf stripe disease. Two leaf stripe isolates PgSy3 (exhibiting high virulence on the barley cultivar 'Arabi Abiad') and PgSy1 (exhibiting low virulence on Arabi Abiad), were mated and 63 progeny were isolated and phenotyped for the reaction on Arabi Abiad. The population segregated in a 1:1 ratio, 32 virulent to 31 avirulent (${\chi}^2$ = 0.05, P = 0.36), indicating single gene control of PgSy3 virulence on Arabi Abiad. Among 96 AFLP markers identified, three AFLP markers, E37M50-400, E35M59-100 and E38M47-800 were linked to the virulence locus VHv1 in isolate PgSy3. The results of this study indicate that (the three markers) are closely linked to VHv1 and are unique to isolates carrying the virulence locus. This work represents an initial step towards map-based cloning of VHv1 in P. graminea.

Utility of taxon-specific molecular markers for the species identification of herbarium specimens: an example from Desmarestia japonica (Phaeophyceae, Desmarestiales) in Korea

  • Lee, Sang-Rae;Lee, Eun-Young
    • Fisheries and Aquatic Sciences
    • /
    • 제21권3호
    • /
    • pp.8.1-8.6
    • /
    • 2018
  • Desmarestia japonica (Phaeophyceae, Desmarestiales) was recently established from the Japanese ligulate Desmarestia and is morphologically similar to D. ligulata. This species has been reported only from Japan. However, the taxonomic reports based on additional regional distributions are needed to clarify this taxonomic entity and its species boundaries. Because Desmarestia species have restricted distributions in Korea, we reexamined herbarium specimens of D. ligulata deposited at the National Institute of Biological Resources (South Korea). To improve the amplification efficiency of the polymerase chain reaction and avoid contamination by the DNA of other organisms, we developed taxon-specific molecular markers suitable for DNA barcoding of Desmarestia species. Nuclear ribosomal small subunit RNA (18S rDNA) and mitochondrial cytochrome c oxidase 1 (cox1) regions were selected as target DNA. As a result, both were successfully isolated from herbarium specimens of D. japonica acquired over 10 years. These molecular markers provide useful genetic information for herbarium specimens for which conventional molecular analysis is challenging.

Cleaved Amplified Polymorphic Sequence and Amplified Fragment Length Polymorphism Markers Linked to the Fertility Restorer Gene in Chili Pepper (Capsicum annuum L.)

  • Kim, Dong Sun;Kim, Dong Hwan;Yoo, Jae Hyoung;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.135-140
    • /
    • 2006
  • Cytoplasmic male sterility (CMS) in plants, which is due to failure to produce functional pollen, is a maternally inherited trait. Specific nuclear genes that suppress CMS, termed fertility restorer (Rf) genes, have been identified in several plants. In this study, Rfl-inked molecular markers in pepper (Capsicum annuum L.) were detected by bulked segregant analysis of eight amplified fragment length polymorphisms (AFLPs). Only AFRF8 was successfully converted to a cleaved amplified polymorphic sequence (CAPS) marker. This was named AFRF8CAPS and genotype determination using it agreed with that obtained with the original AFRF8. A linkage map with a total size of 54.1 cM was constructed with AFRF8CAPS and the seven AFLP markers using the Kosambi function. The AFRF8CAPS marker was shown to be closest to Rf with a genetic distance of 1.8 cM. These markers will be useful for fast and reliable detection of restorer lines during $F_1$ hybrid seed production and breeding programs in pepper.

Molecular Markers and Their Application in Mulberry Breeding

  • Vijayan, Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제15권2호
    • /
    • pp.145-155
    • /
    • 2007
  • Mulberry (Morus spp.) is an economically important tree crop being cultivated in India, China and other sericulturally important countries for its foliage to feed the silk producing insect Bombyx mori L. Genetic improvements of mulberry lag behind to the same in many other economically less important crops due to the complexity of its genetics, the breeding behavior, and the lack of basic information on factors governing important agronomic traits. In this review, the general usage and advantages of different molecular markers including isoenzymes, RFLPs, RAPDs, ISSRs, SSRs, AFLPs and SNPs are described to enlighten their applicability in mulberry genetic improvement programs. Application of DNA markers in germplasm characterization, construction of genetic linkage maps, QTL identification and in marker-assisted selection was also described along with its present status and future prospects.

Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng)

  • Jo, Ick Hyun;Kim, Young Chang;Kim, Dong Hwi;Kim, Kee Hong;Hyun, Tae Kyung;Ryu, Hojin;Bang, Kyong Hwan
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.444-449
    • /
    • 2017
  • The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.