• Title/Summary/Keyword: molecular diversity

Search Result 889, Processing Time 0.03 seconds

Development of Simple Sequence Repeat Markers from Adenophora triphylla var. japonica (Regel) H. Hara using Next Generation Sequencing (차세대염기서열분석법을 이용한 잔대의 SSR 마커 개발)

  • Park, Ki Chan;Kim, Young Guk;Hwangbo, Kyeong;Gil, Jinsu;Chung, Hee;Park, Sin Gi;Hong, Chang Pyo;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.411-417
    • /
    • 2017
  • Background: Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth with radical leaves during the first year and shows reproductive growth with cauline leaves and bolting during the second year. In addition, the shape of the plant varies within the same species. For this reason, there are limitations to classifying the species by visual examination. However, there is not sufficient genetic information or molecular tools to analyze the genetic diversity of the plant. Methods and Results: Approximately 34.59 Gbp of raw data containing 342,487,502 reads was obtained from next generation sequencing (NGS) and these reads were assembled into 357,211 scaffolds. A total of 84,106 simple sequence repeat (SSR) regions were identified and 14,133 primer sets were designed. From the designed primer sets, 95 were randomly selected and were applied to the genomic DNA which was extracted from five plants and pooled. Thirty-nine primer sets showing more than two bands were finally selected as SSR markers, and were used for the genetic relationship analysis. Conclusions: The 39 novel SSR markers developed in this study could be used for the genetic diversity analysis, variety identification, new variety development and molecular breeding of A. triphylla.

Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population

  • Meng, Fanbing;Cai, Jiancheng;Wang, Chunan;Fu, Dechang;Di, Shengwei;Wang, Xibiao;Chang, Yang;Xu, Chunzhu
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1839-1849
    • /
    • 2022
  • Objective: The study aims to uncover the genetic diversity and unique genetic structure of the Min pig conserved population, divide the nucleus conservation population, and construct the molecular pedigree. Methods: We used KPS Porcine Breeding Chip v1 50K for SNP detection of 94 samples (31♂, 63♀) in the Min pig conserved population from Lanxi breeding Farm. Results: The polymorphic marker ratio (PN), the observed heterozygosity (Ho), and the expected heterozygosity (He) were 0.663, 0.335, and 0.330, respectively. The pedigree-based inbreeding coefficients (FPED) was significantly different from those estimated from runs of homozygosity (FROH) and single nucleotide polymorphism (FSNP) based on genome. The Pearson correlation coefficient between FROH and FSNP was significant (p<0.05). The effective population content (Ne) showed a continuously decreasing trend. The rate of decline was the slowest from 200 to 50 generations ago (r = 0.95), then accelerated slightly from 50 to 5 generations ago (1.40

Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles

  • Malathi, Vijayakumar M.;More, Ravi P.;Anandham, Rangasamy;Gracy, Gandhi R.;Mohan, Muthugounder;Venkatesan, Thiruvengadam;Samaddar, Sandipan;Jalali, Sushil Kumar;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.976-986
    • /
    • 2018
  • Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.

Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens

  • Bibi, Fehmida;Yasir, Muhammad;Song, Geun-Cheol;Lee, Sang-Yeol;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.20-31
    • /
    • 2012
  • Endophytic bacterial communities of tidal flat plants antagonistic to oomycete plant pathogens were studied by the isolation of 256 root colonizing endophytic bacteria from surface-disinfected root tissues of six plants ($Rosa$ $rugosa$, $Suaeda$ $maritima$, $Vitex$ $rotundifolia$, $Carex$ $scabrifolia$, $Glehnia$ $littoralis$ and $Elymus$ $mollis$) growing in a tidal flat area of Namhae Island, Korea. To understand the antagonistic potential, an $in$ $vitro$ antagonistic assay was performed to characterize and identify strains that were antagonistic to the oomycete plant pathogens $Phytophthora$ $capsici$ and $Pythium$ $ultimum$ from the total population. Nine percent of the total number of isolated bacteria exhibited in vitro inhibitory activity against target plant pathogenic oomycetes. Taxonomic and phylogenetic placement of the antagonistic bacteria was investigated by analysis of the 16S rRNA gene sequences. The sequence analysis classified the antagonistic strains into four major classes of the domain bacteria ($Firmicutes$, ${\alpha}-Proteobacteria$, ${\gamma}-Proteobacteria$ and $Actinomycetes$) and 10 different genera. Further production of secondary metabolites, hydrolytic enzymes and plant growth promoting traits were determined for the putative new species of antagonistic endophytic bacteria. These new strains could not be identified as known species of ${\alpha}-Proteobacteria$, and so may represent novel bacterial taxa. The unexpected high antagonistic bacterial diversity associated with the tidal flat plants may be indicative of their importance in tidal flat plants as a promising source of novel antimicrobial compounds and biocontrol agents.

O-Methyltransferases from Arabidopsis thaliana

  • Kim, Bong-Gyu;Kim, Dae-Hwan;Hur, Hor-Gil;Lim, Jun;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • O-methylation mediated by O-methyltransferases (OMTs) is a common modification in natural product biosynthesis and contributes to diversity of secondary metabolites. OMTs use phenylpropanoids, flavonoids, other phenolics and alkaloids as substrates, and share common domains for S-adenosyl-L-methionine (AdoMet) and substrate binding. We searched Arabiposis genome and found 17 OMTs genes (AtOMTs). AdoMet- and substrate-binding sites were predicted. AdoMet binding domain of AtOMTs is highly conserved, while substrate-binding domain is diverse, indicating use of different substrates. In addition, expressions of six AtOMT genes in response to UV and in different tissues were investigated using real-time quantitative reverse transcriptase-polymerase chain reaction. All the AtOMTs investigated were expressed under normal growth condition and most, except AtOMT10, were induced after UV illumination. AtOMT1 and AtOMT8 were expressed in all the tissues, whereas AtOMT10 showed flower-specific expression. Analysis of these AtOMT gene expressions could provide some clues on AtOMT involvement in the cellular processes.

Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas

  • Devi, Lamabam Sophiya;Khaund, Polashree;Nongkhlaw, Fenella M.W.;Joshi, S.R.
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.151-158
    • /
    • 2012
  • Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D=1.44) and Aspergillus (D=1.288) were found to have highest diversity index followed by Talaromyces (D=1.26) and Fusarium (D=1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution.

Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay

  • You, Young-Hyun;Yoon, Hyeokjun;Kang, Sang-Mo;Shin, Jae-Ho;Choo, Yeon-Sik;Lee, In-Jung;Lee, Jin-Man;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1549-1556
    • /
    • 2012
  • Endophytic fungi were isolated from roots of six halophytes in Suncheon Bay. The endophytic fungi of 35 species isolated from halophytes were identified by internal transcribed spacer (ITS) containing the ITS1, 5.8s, and ITS2 regions. All fungal strains were analyzed to diversity at the genus level. Fungal culture filtrates (FCF) of endophytic fungi were treated to Waito-c rice (WR) seedling for plant growth-promoting verification. It was confirmed that fungal strain Sj-2-2 provided plant growth promotion (PGP) to WR seedling. Then, PGP of Suaeda japonica was confirmed by treating culture filtrate of Sj-2-2. As a result, it was verified that culture filtrate of Sj-2-2 had more advanced PGP than positive control when treated to S. japonica. The secondary metabolites involved in culture filtrate of Sj-2-2 were identified by HPLC and GC-MS SIM analysis. The presence of physiologically bioactive gibberellins (GAs) and other inactive GAs in culture filtrate of Sj-2-2 was detected. The molecular analysis of sequences of Sj-2-2 showed the similarity to Penicillium sp. of 99% homology. The PGP of Sj-2-2 as well as symbiosis between endophytic fungi and halophytes growing naturally in salt marsh was confirmed. Sj-2-2 was identified as a new fungal strain producing GAs by molecular analysis of sequences. Consequently, the Sj-2-2 fungal strain was named as Penicillium sp. Sj-2-2. In this study, the diversity of endophytic fungi isolated from roots of halophytes in salt marsh and the PGP of a new gibberellin-producing fungal strain were confirmed.

Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

  • Guo, Yan;Zhang, Jinliang;Yan, Yongfeng;Wu, Jian;Zhu, Nengwu;Deng, Changyan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.888-895
    • /
    • 2015
  • Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost.

Genetic Diversity and Phylogenetic Relationships among Microsporidian Isolates from the Indian Tasar Silkworm, Antheraea mylitta, as Revealed by RAPD Fingerprinting Technique

  • Hassan, Wazid;Nath, B. Surendra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • In this study, we investigated genetic diversity of 22 microsporidian isolates infecting tropical tasar silkworm, Antheraea mylitta collected from various geographical forest locations in the state of Jharkhand, India, using polymerase chain reaction (PCR)-based marker assay: random amplified polymorphic DNA (RAPD). A type species, NIK-1s_mys was used as control for comparison. The shape of mature microsporidians was found to be oval to elongate, measuring 3.80 to $5.10{\mu}m$ in length and 2.56 to $3.30{\mu}m$ in width. Of the 20 RAPD primers screened, 16 primers generated reproducible profiles with 298 polymorphic fragments displaying high degree of polymorphism (97%). A total of 14 RAPD primers produced 45 unique putative genetic markers, which were used to differentiate the microsporidians. Calculation of genetic distance coefficients based on dice coefficient method and clustering with un-weighted pair group method using arithmetic average (UPGMA) analysis was conducted to unravel the genetic diversity of microsporidians infecting tasar silkworm. The similarity coefficients varied from 0.059 to 0.980. UPGMA analysis generated a dendrogram with four microsporidian groups, which appear to be different from each other as well as from NIK-1s_mys. Two-dimensional distribution based on Euclidean distance matrix also revealed considerable variability among different microsporidians identified from the tasar silkworms. Clustering of few microsporidian isolates was in accordance with the geographic origin. The results indicate that the RAPD profiles and specific/unique genetic markers can be used for differentiating as well as to identify different microsporidians with considerable accuracy.

Diversity of Paenibacillus spp. in the Rhizosphere of Four Sorghum(Sorghum bicolor) Cultivars Sown with Two Contrasting Levels of Nitrogen Fertilizer Assessed by rpoB-Based PCR-DGGE and Sequencing Analysis

  • Coelho, Marcia Reed Rodrigues;Mota, Fabio Faria Da;Carneiro, Newton Portilho;Marriel, Ivanildo Evodio;Paiva, Edilson;Rosado, Alexandre Soares;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.753-760
    • /
    • 2007
  • The diversity of Paenibacillus species was assessed in the rhizospheres of four cultivars of sorghum sown in Cerrado soil amended with two levels of nitrogen fertilizer(12 and 120 kg/ha). Two cultivars(IS 5322-C and IS 6320) demanded the higher amount of nitrogen to grow, whereas the other two(FBS 8701-9 and IPA 1011) did not. Using the DNA extracted from the rhizospheres, a Paenibacillus-specific PCR system based on the RNA polymerase gene(rpoB) was chosen for the molecular analyses. The resulting PCR products were separated into community fingerprints by DGGE and the results showed a clear distinction between cultivars. In addition, clone libraries were generated from the rpoB fragments of two cultivars(IPA 1011 and IS 5322-C) using both fertilization conditions, and 318 selected clones were sequenced. Analyzed sequences were grouped into 14 Paenibacillus species. A greater diversity of Paenibacillus species was observed in cultivar IPA 1011 compared with cultivar IS 5322-C. Moreover, statistical analyses of the sequences showed that the bacterial diversity was more influenced by cultivar type than nitrogen fertilization, corroborating the DGGE results. Thus, the sorghum cultivar type was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the habitats investigated.