Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2011.0123

Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens  

Bibi, Fehmida (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Yasir, Muhammad (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Song, Geun-Cheol (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Lee, Sang-Yeol (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Chung, Young-Ryun (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.28, no.1, 2012 , pp. 20-31 More about this Journal
Abstract
Endophytic bacterial communities of tidal flat plants antagonistic to oomycete plant pathogens were studied by the isolation of 256 root colonizing endophytic bacteria from surface-disinfected root tissues of six plants ($Rosa$ $rugosa$, $Suaeda$ $maritima$, $Vitex$ $rotundifolia$, $Carex$ $scabrifolia$, $Glehnia$ $littoralis$ and $Elymus$ $mollis$) growing in a tidal flat area of Namhae Island, Korea. To understand the antagonistic potential, an $in$ $vitro$ antagonistic assay was performed to characterize and identify strains that were antagonistic to the oomycete plant pathogens $Phytophthora$ $capsici$ and $Pythium$ $ultimum$ from the total population. Nine percent of the total number of isolated bacteria exhibited in vitro inhibitory activity against target plant pathogenic oomycetes. Taxonomic and phylogenetic placement of the antagonistic bacteria was investigated by analysis of the 16S rRNA gene sequences. The sequence analysis classified the antagonistic strains into four major classes of the domain bacteria ($Firmicutes$, ${\alpha}-Proteobacteria$, ${\gamma}-Proteobacteria$ and $Actinomycetes$) and 10 different genera. Further production of secondary metabolites, hydrolytic enzymes and plant growth promoting traits were determined for the putative new species of antagonistic endophytic bacteria. These new strains could not be identified as known species of ${\alpha}-Proteobacteria$, and so may represent novel bacterial taxa. The unexpected high antagonistic bacterial diversity associated with the tidal flat plants may be indicative of their importance in tidal flat plants as a promising source of novel antimicrobial compounds and biocontrol agents.
Keywords
antagonistic endophytes; Phytophthora; plant growth promoting traits; Pythium; tidal flat plants;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The Clustal X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. Res. 25:4876-4882.   DOI   ScienceOn
2 Thorsten, B., Gabriela, B., Thorsten, H., Lanfang, L., Andrea, S. and Meinhard, S. 2004. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol. 70:2560-2565.   DOI
3 Wagner-Dobler, I., Rheims, H., Felske, A., El-Ghezal, A., Flade-Schroder, D., Laatsch, H., Lang, S., Pukall, R. and Tindall, B. J. 2004. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea á-proteobacterium that produces bioactive metabolites. Int. J. Syst. Evol. Microbiol. 54:1177-1184.   DOI   ScienceOn
4 Wang, Y., Brown, H. N., Crowley, D. E. and Szaniszlo, P. J. 1993. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ. 16:579-585.   DOI   ScienceOn
5 Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187.   DOI   ScienceOn
6 Zhang, Z. and Yuen, G. Y. 1999. Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia C3. Phytopathology 89:817-822.   DOI   ScienceOn
7 Rosenblueth, M. and Martínez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837.   DOI   ScienceOn
8 Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932.   DOI   ScienceOn
9 Scher, F. M. and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567-1573.   DOI
10 Schulz, B. and Boyle, C. 2006. What are endophytes? Pages 1-13 in: Microbial Root Endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
11 Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biological controls of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 92:92-99.
12 Sgroy, V., Cassan, F., Masciarelli, O., Florencia Del Papa, M., Lagares, A. and Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85:371-381.   DOI   ScienceOn
13 Shin, D, S., Park, M. S., Jung, S., Lee, M. S., Lee, K. H., Bae, K, S. and Kim, S, B. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17:1361-1368.
14 McSpadden-Gardener, B. B., Gutierrez, L. J., Joshi, R., Edema, R. and Lutton, E. 2005. Distribution and biocontrol potential of phlD (+) pseudomonads in corn and soybean fields. Phytopathology 95:715-724.   DOI   ScienceOn
15 Smibert, R. and Krieg, N. R. 1994. Phenotypic characterization. Pages 607-654 in: Methods for General and Molecular Bacteriology, P. Gerhardt, R. G. E. Murray, W. A. Wood., and N. R. Krieg, eds. American Society for Microbiology, Washington, DC.
16 Strobel, G. 2003. Endophytes as sources of bioactive products. Microbes. Infect. 5:53-544.
17 Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI   ScienceOn
18 Misaghi, I. J. and Donndelinger, C. R. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808-811.   DOI
19 Mohamed, M., Cicirelli, E. M., Kan, J., Chen, F., Fuqua, C. and Hill, R. T. 2008. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges Nagl. Environ Microbiol. 10:75-86.
20 Nathan, A. M., Jessica, M. K., Valerie, B., Martin, D. and David, H. S. 2004. Isolation and characterization of novel marinederived actinomycete taxa rich in bioactive metabolites. Appl. Environ. Microbiol. 70:7520-7529.   DOI   ScienceOn
21 Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270.   DOI   ScienceOn
22 O Sullivan, D. G. and O Gara, F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662-676.
23 Romanenko, L. A., Uchino, M., Falsen, E., Frolova, G. M., Zhukova, N. V. and Mikhailov, V. V. 2005. Pseudomonas pachasterellae sp. nov., isolated from a marine sponge. Int. J. Syst. Evol. Microbiol. 55:919-924.   DOI   ScienceOn
24 Palacios, L., Arahal, D., Reguera, B. and Marin, I. 2006. Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int. J. Syst. Evol. Microbiol. 56:1991-1995.   DOI   ScienceOn
25 Perez-Miranda, S., Cabirol, N., George-Tellez, R., Zamudio-Rivera, L. S. and Fernandez, F. J. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Meth. 70:127-131.   DOI   ScienceOn
26 Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339.   DOI   ScienceOn
27 Kloepper, J. W. and Ryu, C.-M. 2006. Bacterial endophytes as elicitors of induced systemic resistance. Pages 33-52 in: Microbial root endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
28 Kobayashi, D. Y. and Palumbo, J. D. 2000. Bacterial endophytes and their effects on plants and uses in agriculture. Pages 199-233 in: Microbial Endophyte. C.W. James, and J. F. White, eds. Marcel Dekker Inc, New York.
29 Kobayashi, S., Hodaka, S., Kawamura, Y., Ozaki, M. and Hayase, Y. 1998. Micacocidin A, B and C, novel antimycoplasma agents from Pseudomonas sp. J. Antbiotics 51:323-332.   DOI
30 Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584.   DOI   ScienceOn
31 Lemos, M. L., Toranzo, A. E. and Barja, J. L. 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb. Ecol. 11:149-163.   DOI   ScienceOn
32 McCormack, P., Wildman, H. and Jeffries, O. 1995. The influence of moisture on the suppression of Pseudomonas syringae by Aureobasidium pullulans on an artificial leaf surface. FEMS Microbiol. Ecol. 16:159-166.   DOI
33 Long, R. A. and Azam, F. 2001. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67:4975-4983.   DOI   ScienceOn
34 Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J. and Woese, C. R. 1996. The ribosomal database project (RDP). Nucleic Acids Res. 24:82-85.   DOI   ScienceOn
35 Manjula, K., Singh, S. D. and Kishore, K. G. 2002. Role of endophytic bacteria in biological control of plant diseases. Ann. Rev. Plant Pathol. 1:231-252.
36 Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L. and Grau, C. R. 1990. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56:713-718.
37 Hendricks, C. W., Doyle, J. D., and Hugley, B. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 61:2016-2019.
38 Hong, T. Y. and Meng, M. 2003. Biochemical characterization and antifungal activity of an endo-1,3-${\beta}$-glucanase of Paenibacillus sp. isolated from garden soil. Appl. Microbiol. Biotechnol. 61:472-478.   DOI   ScienceOn
39 Jensen, P. R. and Fenical, W. 1996. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. Biotechnol. 17:346-351.   DOI
40 Jensen, P. and Fenical, W. 2000. Marine microorganisms and drug discovery: current status and future potential. Pages 6-79 in: Drugs from the sea. N. Fusetani, ed., Karger, Basel, Switzerland.
41 Kloepper, J. W., Ryu, C.-M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266.   DOI   ScienceOn
42 Jung, W. J. H., Kitamura, E., Myouga, H. and Kamei, Y. 2002. An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl. Environ. Microbiol. 68:2666-2675.   DOI
43 Keel, C., Voisard, C., Berling, C. H., Kahr, G. and Defago, G. 1989. Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584-589.   DOI
44 Kim, S. G., Jang, Y., Kim, H. Y., Koh, Y. J., and Kim, Y. H. 2010. Comparison of microbial fungicides in antagonistic activities related to the biological control of phytophthora blight in chili pepper caused by Phytophthora capsici. Plant Pathol. J. 26:340-345.   DOI   ScienceOn
45 Chung, E. J., Park, J. H., Park, T. S., Ahn, J.-W. and Chung, Y. R. 2010. Production of a phytotoxic compound, 3-phenyl propionic acid by a bacterial endophyte, Arthrobacter humicola YC6002 isolated from the root of Zoysia japonica. Plant Pathol. J. 26:245-252.   DOI   ScienceOn
46 Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E. and Kennedy, C. 2004. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol. Ecol. 49:469-479.   DOI   ScienceOn
47 Davidson, S. K., Allen, S. W., Lim, G. E., Anderson, C. M. and Haygood, M. G. 2001. Evidence for the biosynthesis of Bryostatins by the bacterial symbiont "Candidatus Endobugula sertula" of the Bryozoan Bugula neritina. Appl. Environ. Microbiol. 67:4531-4537.   DOI   ScienceOn
48 Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68:280-300.   DOI   ScienceOn
49 Domenech, J., Ramos, S. B., Probanza, A., Lucas, G. J. A. and Gutierrez, M. F. J. 2007. Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil. 290:43-50.   DOI
50 Dong, J., Hong, Y., Shao, Z. and Liu, Z. 2010. Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J. Microbiol. 48:393-398.   DOI
51 Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid production. Plant Physiol. 26:192-195.   DOI   ScienceOn
52 Hallmann, J. and Berg, G. 2006. Spectrum and population dynamics of bacterial root endophytes. Pages 15-31 in: Microbial Root Endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
53 Barbieri, E., Gioacchini, A. M., Zambonelli, A., Bertini, L. and Stocchi, V. 2005. Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 19:3411-3415.   DOI   ScienceOn
54 Berg, G. and Hallmann, J. 2006. Control of plant pathogenic fungi with bacterial endophytes. Pages 53-69 in: Microbial root endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
55 Brooks, D. S., Gonzalez, C. F., Appel, D. N. and Filer, T. H. 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control 4:373-381.   DOI   ScienceOn
56 Conn, V. M., Walker, A. R. and Franco, C. M. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:208-218.   DOI   ScienceOn
57 Chert, C., Bauske, E. M., Musson, G., Rodriguez-Kabana, R. and Kloepper, J. W. 1995. Biological control of Fusarium wilt of cotton by use of endophytic bacteria. Biol. Control 5:10-16.
58 Chung, B. S., Aslam, Z., Kim, S. W., Kim, G. G., Kang, H. S., Ahn, J. W. and Chung, Y. R. 2008. A bacterial endophyte, Pseudomonas brassicacearum YC5480 isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol. J. 24:461-468.   DOI   ScienceOn
59 Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C. and Ait Barka, E. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-1693.   DOI   ScienceOn
60 Coombs, J. T. and Franco, C. M. M. 2003. Isolation and identification of actinobacteria isolated from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69:5303-5308.
61 Coombs, J. T., Michelsen, P. P. and Franco, C. M. M. 2004. Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol. Control 29:359-366.   DOI   ScienceOn
62 Araujo, W. L., Marcon, J., Maccheroni, W, Jr., Van Elsas, J. D., Van Vuurde, J. W. L. and Azevedo, J. L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68:4906-4914.   DOI   ScienceOn
63 Agrios, G. N. 2005. Disease caused by oomycetes. Pages 409-428 in: Plant Pathology. 5th ed. Academic Press, New York.
64 Al-Mallah, M. K., Davey, M. R. and Cooking, E. C. 1987. Enzymatic treatment of clover root hairs removes a barrier to Rhizobium host specificity. Biotechnology 5:1319-1322.   DOI